Macrocell radio wave propagation prediction using an artificial neural network

被引:0
|
作者
Östlin, E [1 ]
Zepernick, HJ [1 ]
Suzuki, H [1 ]
机构
[1] Telecommun Res Inst, Nedlands, WA 6907, Australia
关键词
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This paper presents and evaluates an artificial neural network model used for macrocell radio wave propagation prediction. Measurement data obtained by utilising the IS-95 pilot signal of a commercial code division multiple access mobile network in rural Australia is used to train the model. Simple models requiring only small amounts of training data have been used for the propagation predictions. The neural network inputs are chosen to be distance to base station and parameters easily obtained from terrain path profiles. It is concluded that a path loss predictor based on a simple neuron model generalises relatively well and requires only a few iterations in batch mode, using the Levenberg-Marquardt algorithm and early stopping, to converge to its optimum. The path loss prediction results using the neural models are favourably compared to the new semi-terrain based propagation model Recommendation ITU-R P.1546 and traditional models, such as the Hata model. The statistical analysis shows that the simplistic artificial neural network approach is an alternative to traditional propagation models regarding accuracy complexity and prediction time.
引用
收藏
页码:57 / 61
页数:5
相关论文
共 50 条
  • [1] Neural network prediction of radio propagation
    Qiu, Lei
    Jiang, Danchi
    Hanlen, Leif
    6TH AUSTRALIAN COMMUNICATIONS THEORY WORKSHOP 2005, PROCEEDINGS, 2005, : 272 - 277
  • [2] Prediction of indoor radio propagation using deep neural network
    Nakanishi, Takayuki
    Shimizu, Kenya
    Hitomi, Kenzaburo
    Nishioka, Yasuhiro
    Inasawa, Yoshio
    IEICE COMMUNICATIONS EXPRESS, 2022, 12 (09): : 559 - 563
  • [3] Radio Propagation Prediction Using Neural Network and Building Occupancy Estimation
    Inoue, Kazuya
    Ichige, Koichi
    Nagao, Tatsuya
    Hayashi, Takahiro
    2020 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP), 2021, : 315 - 316
  • [4] Modeling blast wave propagation using artificial neural network methods
    Flood, Ian
    Bewick, Bryan T.
    Dinan, Robert J.
    Salim, Hani A.
    ADVANCED ENGINEERING INFORMATICS, 2009, 23 (04) : 418 - 423
  • [5] Macrocell Path-Loss Prediction Using Artificial Neural Networks
    Ostlin, Erik
    Zepernick, Hans-Jurgen
    Suzuki, Hajime
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2010, 59 (06) : 2735 - 2747
  • [6] NEURAL-NETWORK APPROACH TO PREDICTION OF TERRESTRIAL WAVE-PROPAGATION FOR MOBILE RADIO
    STOCKER, KE
    GSCHWENDTNER, BE
    LANDSTORFER, FM
    IEE PROCEEDINGS-H MICROWAVES ANTENNAS AND PROPAGATION, 1993, 140 (04) : 315 - 320
  • [7] Evaluation of radio propagation parameters for field strength prediction using neural network
    Monteiro, Bruno
    Cavalcante, Gervasio P. S.
    Gomes, Herminio S.
    Rosario, Danileno M.
    Lima, F. F.
    Junior, H. A.
    2007 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE, VOLS 1 AND 2, 2007, : 888 - +
  • [8] Radio propagation prediction using deep neural network and building occupancy estimation
    Inoue, Kazuya
    Ichige, Koichi
    Nagao, Tatsuya
    Hayashi, Takahiro
    IEICE COMMUNICATIONS EXPRESS, 2020, 9 (10): : 506 - 511
  • [9] Shear wave velocity prediction using Elman artificial neural network
    Behzad Mehrgini
    Hossein Izadi
    Hossein Memarian
    Carbonates and Evaporites, 2019, 34 : 1281 - 1291
  • [10] Shear wave velocity prediction using Elman artificial neural network
    Mehrgini, Behzad
    Izadi, Hossein
    Memarian, Hossein
    CARBONATES AND EVAPORITES, 2019, 34 (04) : 1281 - 1291