GLOBAL-IN-TIME GEVREY REGULARITY SOLUTION FOR A CLASS OF BISTABLE GRADIENT FLOWS

被引:6
|
作者
Chen, Nan [1 ,2 ]
Wang, Cheng [3 ]
Wise, Steven [4 ]
机构
[1] NYU, Courant Inst Math Sci, Dept Math, New York, NY 10012 USA
[2] NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10012 USA
[3] Univ Massachusetts, Dept Math, N Dartmouth, MA 02747 USA
[4] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
来源
基金
美国国家科学基金会;
关键词
Bistable gradient flow; Gevrey regularity solution; global-in-time existence; NAVIER-STOKES EQUATIONS; ENERGY STABLE SCHEME; THIN-FILM MODEL; EPITAXIAL-GROWTH; SPACE ANALYTICITY; BOUNDARY; CONVECTION; EXISTENCE; PATTERNS;
D O I
10.3934/dcdsb.2016018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence and uniqueness of a Gevrey regularity solution for a class of nonlinear bistable gradient flows, where with the energy may be decomposed into purely convex and concave parts. Example equations include certain epitaxial thin film growth models and phase field crystal models. The energy dissipation law implies a bound in the leading Sobolev norm. The polynomial structure of the nonlinear terms in the chemical potential enables us to derive a local-in-time solution with Gevrey regularity, with the existence time interval length dependent on a certain H-m norm of the initial data. A detailed Sobolev estimate for the gradient equations results in a uniform-in-time-bound of that H-m norm, which in turn establishes the existence of a global-in-time solution with Gevrey regularity.
引用
收藏
页码:1689 / 1711
页数:23
相关论文
共 39 条
  • [1] GLOBAL-IN-TIME GEVREY REGULARITY SOLUTIONS FOR THE FUNCTIONALIZED CAHN-HILLIARD EQUATION
    Cheng, Kelong
    Wang, Cheng
    Wise, Steven M.
    Yuan, Zixia
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (08): : 2211 - 2229
  • [2] Global-in-time semiclassical regularity for the Hartree-Fock equation
    Chong, J. J.
    Lafleche, L.
    Saffirio, C.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (08)
  • [3] Multicomponent reactive flows:: Global-in-time existence for large data
    Feireisl, Eduard
    Petzeltova, Hana
    Trivisa, Konstantina
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (05) : 1017 - 1047
  • [4] Homogeneous Sobolev global-in-time maximal regularity and related trace estimates
    Gaudin, Anatole
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (01)
  • [5] Homogeneous Sobolev global-in-time maximal regularity and related trace estimates
    Anatole Gaudin
    [J]. Journal of Evolution Equations, 2024, 24
  • [6] Gevrey class regularity for the time-dependent Ginzburg-Landau equations
    Chae, DH
    Han, JM
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (02): : 244 - 257
  • [7] Gevrey class regularity for the time-dependent Ginzburg-Landau equations
    D. Chae
    J. Han
    [J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1999, 50 : 244 - 257
  • [8] GLOBAL-IN-TIME BEHAVIOR OF THE SOLUTION TO A GIERER-MEINHARDT SYSTEM
    Karali, Georgia
    Suzuki, Takashi
    Yamada, Yoshio
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (07) : 2885 - 2900
  • [9] Global-in-time regularity via duality for congestion-penalized Mean Field Games
    Prosinski, Adam
    Santambrogio, Filippo
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2017, 89 (6-7): : 923 - 942
  • [10] A Global-in-time Domain Decomposition Method for the Coupled Nonlinear Stokes and Darcy Flows
    Thi-Thao-Phuong Hoang
    Hyesuk Lee
    [J]. Journal of Scientific Computing, 2021, 87