Machine-learning-guided descriptor selection for predicting corrosion resistance in multi-principal element alloys

被引:39
|
作者
Roy, Ankit [1 ,2 ]
Taufique, M. F. N. [2 ]
Khakurel, Hrishabh [3 ]
Devanathan, Ram [2 ]
Johnson, Duane D. [4 ,5 ]
Balasubramanian, Ganesh [1 ]
机构
[1] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA
[2] Pacific Northwest Natl Lab, Richland, WA 99354 USA
[3] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
[4] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA
[5] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
HIGH-ENTROPY ALLOYS; AL ADDITION; MICROSTRUCTURE; PHASE; BEHAVIOR; STEEL; CHLORIDE; STRENGTH; NICKEL;
D O I
10.1038/s41529-021-00208-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
More than $270 billion is spent on combatting corrosion annually in the USA alone. As such, we present a machine-learning (ML) approach to down select corrosion-resistant alloys. Our focus is on a non-traditional class of alloys called multi-principal element alloys (MPEAs). Given the vast search space due to the variety of compositions and descriptors to be considered, and based upon existing corrosion data for MPEAs, we demonstrate descriptor optimization to predict corrosion resistance of any given MPEA. Our ML model with descriptor optimization predicts the corrosion resistance of a given MPEA in the presence of an aqueous environment by down selecting two environmental descriptors (pH of the medium and halide concentration), one chemical composition descriptor (atomic % of element with minimum reduction potential), and two atomic descriptors (difference in lattice constant (Delta a) and average reduction potential). Our findings show that, while it is possible to down select corrosion-resistant MPEAs by using ML from a large search space, a larger dataset and higher quality data are needed to accurately predict the corrosion rate of MPEAs. This study shows both the promise and the perils of ML when applied to a complex chemical phenomenon like corrosion of alloys.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Machine-learning-guided descriptor selection for predicting corrosion resistance in multi-principal element alloys
    Ankit Roy
    M. F. N. Taufique
    Hrishabh Khakurel
    Ram Devanathan
    Duane D. Johnson
    Ganesh Balasubramanian
    [J]. npj Materials Degradation, 6
  • [2] Machine learning for phase selection in multi-principal element alloys
    Islam, Nusrat
    Huang, Wenjiang
    Zhuang, Houlong L.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2018, 150 : 230 - 235
  • [3] Controlling the corrosion resistance of multi-principal element alloys
    Scully, John R.
    Inman, Samuel B.
    Gerard, Angela Y.
    Taylor, Christopher D.
    Windl, Wolfgang
    Schreiber, Daniel K.
    Lu, Pin
    Saal, James E.
    Frankel, Gerald S.
    [J]. SCRIPTA MATERIALIA, 2020, 188 (188) : 96 - 101
  • [4] Predicting Oxidation Behavior of Multi-Principal Element Alloys by Machine Learning Methods
    Jose A. Loli
    Amish R. Chovatiya
    Yining He
    Zachary W. Ulissi
    Maarten P. de Boer
    Bryan A. Webler
    [J]. Oxidation of Metals, 2022, 98 : 429 - 450
  • [5] Predicting Oxidation Behavior of Multi-Principal Element Alloys by Machine Learning Methods
    Loli, Jose A.
    Chovatiya, Amish R.
    He, Yining
    Ulissi, Zachary W.
    de Boer, Maarten P.
    Webler, Bryan A.
    [J]. OXIDATION OF METALS, 2022, 98 (5-6): : 429 - 450
  • [6] A perspective on corrosion of multi-principal element alloys
    Birbilis, N.
    Choudhary, S.
    Scully, J. R.
    Taheri, M. L.
    [J]. NPJ MATERIALS DEGRADATION, 2021, 5 (01)
  • [7] A perspective on corrosion of multi-principal element alloys
    N. Birbilis
    S. Choudhary
    J. R. Scully
    M. L. Taheri
    [J]. npj Materials Degradation, 5
  • [8] Phase Selection Rules of Multi-Principal Element Alloys
    Wang, Lin
    Ouyang, Bin
    [J]. ADVANCED MATERIALS, 2024, 36 (16)
  • [9] Phase classification of multi-principal element alloys via interpretable machine learning
    Kyungtae Lee
    Mukil V. Ayyasamy
    Paige Delsa
    Timothy Q. Hartnett
    Prasanna V. Balachandran
    [J]. npj Computational Materials, 8
  • [10] Phase classification of multi-principal element alloys via interpretable machine learning
    Lee, Kyungtae
    Ayyasamy, Mukil, V
    Delsa, Paige
    Hartnett, Timothy Q.
    Balachandran, Prasanna, V
    [J]. NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)