Error correction and decoding for quantum stabilizer codes

被引:3
|
作者
Xiao Fang-Ying [1 ]
Chen Han-Wu
机构
[1] Southeast Univ, Sch Engn & Comp Sci, Nanjing 211189, Peoples R China
基金
中国国家自然科学基金;
关键词
stabilizer code; check matrix; error syndrome; Pauli operator;
D O I
10.7498/aps.60.080303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Mapping the error syndromes to error operators is the core of quantum decoding network and the key step to realize quantum error correction. The definitions of the bit flip error syndrome matrix and the phase flip error syndrome matrix are presented, and then the error syndromes of Pauli errors are expressed in terms of the columns of the bit flip error syndrome matrix and the phase flip error syndrome matrix. It is also shown that the error syndrome matrix of a stabilizer code is determined by its check matrix, which is similar to the relationship between the classical error and the parity check matrix of classical codes. So, the techniques of error detection and error correction for classical linear codes can be applied to quantum stabilizer codes after some modifications. The error correction circuits are constructed based on the relationship between the error operator and error syndrom. The decoding circuit is constructed by reversing the encoding circuit because the encoding operators are unitary.
引用
收藏
页数:7
相关论文
共 11 条
  • [1] Quantum error correction via codes over GF (4)
    Calderbank, AR
    Rains, EM
    Shor, PW
    Sloane, NJA
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) : 1369 - 1387
  • [2] Efficient computations of encodings for quantum error correction
    Cleve, R
    Gottesman, D
    [J]. PHYSICAL REVIEW A, 1997, 56 (01): : 76 - 82
  • [3] Message passing in fault-tolerant quantum error correction
    Evans, Zachary W. E.
    Stephens, Ashley M.
    [J]. PHYSICAL REVIEW A, 2008, 78 (06)
  • [4] FORNEY GD, 2007, IEEE T INFORM THEORY
  • [5] Gottesman D. E., 1997, Ph.D. dissertation
  • [6] Nonbinary stabilizer codes over finite fields
    Ketkar, Avanti
    Klappenecker, Andreas
    Kumar, Santosh
    Sarvepalli, Pradeep Kiran
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (11) : 4892 - 4914
  • [7] Li Y, 2009, CHINESE PHYS B, V18, P4154, DOI 10.1088/1674-1056/18/10/014
  • [8] NIELSEN MA, 2000, QUANTUM COMPUTATION, P72
  • [9] Poulin D, 2008, QUANTUM INF COMPUT, V8, P987
  • [10] Quantum-shift-register circuits
    Wilde, Mark M.
    [J]. PHYSICAL REVIEW A, 2009, 79 (06):