On the value distribution of positive definite quadratic forms

被引:2
|
作者
Mueller, Wolfgang [1 ]
机构
[1] Graz Univ Technol, Inst Stat, A-8010 Graz, Austria
来源
MONATSHEFTE FUR MATHEMATIK | 2011年 / 162卷 / 01期
关键词
Diophantine inequalities; Quadratic forms; Correlation functions;
D O I
10.1007/s00605-009-0161-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote by 0 = lambda(0) < lambda(I) <= lambda(2) <= < ... the infinite sequence given by the values of a positive definite irrational quadratic form in k variables at integer points. For l <= 2 and an (l - l)-dimensional interval I = I-2 x ... x I-1 we consider the l-level correlation function K-I((I))(R) which counts the number of tuples (i(1),...,i(l)) such that lambda(il,...,lambda)il <= R-2 and lambda(ij) - lambda ij epsilon I-j for 2 <= j <= l. We study the asymptotic behavior of K-I((I))(R) (R) as R tends to infinity. If k >= 4 we prove K-I((I)) (R) similar to c(l)(Q)vol(I)Rlk-2(l-1) for arbitrary l, where c(l)(Q) is an explicitly determined constant. This remains true for k = 3 under the restriction l <= 3.
引用
收藏
页码:69 / 88
页数:20
相关论文
共 50 条