A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems

被引:27
|
作者
Hüeber, S [1 ]
Mair, M [1 ]
Wohlmuth, BI [1 ]
机构
[1] Univ Stuttgart, IANS, D-7000 Stuttgart, Germany
关键词
multibody contact problems; optimal a priori error estimates; primal-dual active set strategy; mortar finite element methods; dual Lagrange multipliers; nonconforming meshes; linear elasticity;
D O I
10.1016/j.apnum.2004.09.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonconforming domain decomposition methods and their application to the numerical simulation of non-linear multibody contact problems play an important role in many applications in mechanics. To handle the non-linearity of the contact conditions, we apply a primal-dual active set strategy based on dual Lagrange multipliers. Combining this method with an optimal multigrid for the resulting linear algebraic problems and using inexact strategies, our algorithm yields an efficient iterative solver. Furthermore, we establish, under some regularity assumptions on the solution, optimal convergence orders for the discretization errors for the displacement and the Lagrange multiplier for linear and quadratic finite element spaces; we combine quadratic finite elements with linear and quadratic dual Lagrange multipliers. Several numerical examples confirm our theoretical results. In the last section, we extend our algorithm to a dynamic non-linear multibody contact problem. (c) 2004 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:555 / 576
页数:22
相关论文
共 14 条
  • [1] A primal-dual active set strategy for non-linear multibody contact problems
    Hüeber, S
    Wohlmuth, BI
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (27-29) : 3147 - 3166
  • [2] A Primal-Dual Active Set Strategy for Finite Deformation Dual Mortar Contact
    Popp, Alexander
    Gee, Michael W.
    Wall, Wolfgang A.
    RECENT ADVANCES IN CONTACT MECHANICS, 2013, 56 : 151 - 171
  • [3] Inexact primal-dual active set method for solving elastodynamic frictional contact problems
    Abide, Stephane
    Barboteu, Mikael
    Cherkaoui, Soufiane
    Danan, David
    Dumont, Serge
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 82 : 36 - 59
  • [4] A finite deformation mortar contact formulation using a primal-dual active set strategy
    Popp, Alexander
    Gee, Michael W.
    Wall, Wolfgang A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (11) : 1354 - 1391
  • [5] Unified primal-dual active set method for dynamic frictional contact problems
    Abide, Stephane
    Barboteu, Mikael
    Cherkaoui, Soufiane
    Dumont, Serge
    FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING, 2022, 2022 (01):
  • [6] Primal-dual active set strategy for a general class of constrained optimal control problems
    Kunisch, K
    Rösch, A
    SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (02) : 321 - 334
  • [7] A fast and robust iterative solver for nonlinear contact problems using a primal-dual active set strategy and algebraic multigrid
    Brunssen, S.
    Schmid, F.
    Schaefer, M.
    Wohlmuth, B.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 69 (03) : 524 - 543
  • [8] A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction
    Hueeber, S.
    Stadler, G.
    Wohlmuth, B. I.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02): : 572 - 596
  • [9] An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements
    B. I. Wohlmuth
    A. Popp
    M. W. Gee
    W. A. Wall
    Computational Mechanics, 2012, 49 : 735 - 747
  • [10] An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements
    Wohlmuth, B. I.
    Popp, A.
    Gee, M. W.
    Wall, W. A.
    COMPUTATIONAL MECHANICS, 2012, 49 (06) : 735 - 747