Inducing Sparsity and Shrinkage in Time-Varying Parameter Models

被引:48
|
作者
Huber, Florian [1 ]
Koop, Gary [2 ]
Onorante, Luca [3 ]
机构
[1] Univ Salzburg, Salzburg Ctr European Union Studies, Monchsberg 2A, A-5020 Salzburg, Austria
[2] Univ Strathclyde, Dept Econ, Glasgow, Lanark, Scotland
[3] European Cent Bank, Frankfurt, Germany
基金
奥地利科学基金会;
关键词
Hierarchical priors; Shrinkage; Sparsity; Time-varying parameter regression; Vector autoregressions; STOCHASTIC VOLATILITY; VARIABLE SELECTION; VECTOR AUTOREGRESSIONS; PRIORS; SPIKE;
D O I
10.1080/07350015.2020.1713796
中图分类号
F [经济];
学科分类号
02 ;
摘要
Time-varying parameter (TVP) models have the potential to be over-parameterized, particularly when the number of variables in the model is large. Global-local priors are increasingly used to induce shrinkage in such models. But the estimates produced by these priors can still have appreciable uncertainty. Sparsification has the potential to reduce this uncertainty and improve forecasts. In this article, we develop computationally simple methods which both shrink and sparsify TVP models. In a simulated data exercise, we show the benefits of our shrink-then-sparsify approach in a variety of sparse and dense TVP regressions. In a macroeconomic forecasting exercise, we find our approach to substantially improve forecast performance relative to shrinkage alone.
引用
收藏
页码:669 / 683
页数:15
相关论文
共 50 条
  • [1] Hierarchical Shrinkage in Time-Varying Parameter Models
    Belmonte, Miguel A. G.
    Koop, Gary
    Korobilis, Dimitris
    [J]. JOURNAL OF FORECASTING, 2014, 33 (01) : 80 - 94
  • [2] Time-dependent shrinkage of time-varying parameter regression models
    He, Zhongfang
    [J]. ECONOMETRIC REVIEWS, 2024, 43 (01) : 1 - 29
  • [3] Dynamic shrinkage in time-varying parameter stochastic volatility in mean models
    Huber, Florian
    Pfarrhofer, Michael
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2021, 36 (02) : 262 - 270
  • [4] Time-varying sparsity in dynamic regression models
    Kalli, Maria
    Griffin, Jim E.
    [J]. JOURNAL OF ECONOMETRICS, 2014, 178 (02) : 779 - 793
  • [5] Achieving shrinkage in a time-varying parameter model framework
    Bitto, Angela
    Fruehwirth-Schnatter, Sylvia
    [J]. JOURNAL OF ECONOMETRICS, 2019, 210 (01) : 75 - 97
  • [6] Time-Varying Parameter Realized Volatility Models
    Wang, Yudong
    Pan, Zhiyuan
    Wu, Chongfeng
    [J]. JOURNAL OF FORECASTING, 2017, 36 (05) : 566 - 580
  • [7] TIME-VARYING PARAMETER REGRESSION-MODELS
    BECK, N
    [J]. AMERICAN JOURNAL OF POLITICAL SCIENCE, 1983, 27 (03) : 557 - 600
  • [8] Time-varying parameter models with endogenous regressors
    Kim, CJ
    [J]. ECONOMICS LETTERS, 2006, 91 (01) : 21 - 26
  • [9] An Alternative Estimation Method for Time-Varying Parameter Models
    Ito, Mikio
    Noda, Akihiko
    Wada, Tatsuma
    [J]. ECONOMETRICS, 2022, 10 (02)
  • [10] Shrinkage in the Time-Varying Parameter Model Framework Using the R Package shrinkTVP
    Knaus, Peter
    Bitto-Nemling, Angela
    Cadonna, Annalisa
    Fruhwirth-Schnatter, Sylvia
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2021, 100 (13): : 1 - 32