Multi-granularity Evolution Network for Dynamic Link Prediction

被引:2
|
作者
Yang, Yi [1 ,2 ]
Gu, Xiaoyan [1 ]
Fan, Haihui [1 ]
Li, Bo [1 ]
Wang, Weiping [1 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
关键词
Dynamic graph; Link prediction; Network embedding;
D O I
10.1007/978-3-031-05933-9_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dynamic link prediction target to predict future new links in a dynamic network, is widely used in social networks, knowledge graphs, etc. Some existing dynamic methods capture structural characteristics and learn the evolution process from the entire graph, which pays no attention to the association between subgraphs and ignores that graphs under different granularity have different evolve patterns. Although some static methods use multi-granularity subgraphs, they can hardly be applied to dynamic graphs. We propose a novel Temporal K-truss based Recurrent Graph Convolutional Network (TKRGCN) for dynamic link prediction, which learns graph embedding from different granularity subgraphs. Specifically, we employ k-truss decomposition to extract multi-granularity subgraphs which preserve both local and global structure information. Then we design a RNN framework to learn spatio-temporal graph embedding under different granularities. Extensive experiments demonstrate the effectiveness of our proposed TKRGCN and its superiority over some state-of-the-art dynamic link prediction algorithms.
引用
收藏
页码:393 / 405
页数:13
相关论文
共 50 条
  • [1] Multi-granularity scenarios understanding network for trajectory prediction
    Yang, Biao
    Yang, Jicheng
    Ni, Rongrong
    Yang, Changchun
    Liu, Xiaofeng
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (01) : 851 - 864
  • [2] Multi-granularity scenarios understanding network for trajectory prediction
    Biao Yang
    Jicheng Yang
    Rongrong Ni
    Changchun Yang
    Xiaofeng Liu
    [J]. Complex & Intelligent Systems, 2023, 9 : 851 - 864
  • [3] Learning Multi-granularity Dynamic Network Representations for Social Recommendation
    Liu, Peng
    Zhang, Lemei
    Gulla, Jon Atle
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT II, 2019, 11052 : 691 - 708
  • [4] Explainable link prediction based on multi-granularity relation-embedded representation
    Zheng, Jianxing
    Li, Qinwen
    Liao, Jian
    Wang, Suge
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 230
  • [5] Multi-granularity evolution analysis of software using complex network theory
    Weifeng Pan
    Bing Li
    Yutao Ma
    Jing Liu
    [J]. Journal of Systems Science and Complexity, 2011, 24 : 1068 - 1082
  • [6] An Evolution Analysis of Software System Based on Multi-granularity Software Network
    基于多粒度软件网络模型的软件系统演化分析
    [J]. 2018, Chinese Institute of Electronics (46):
  • [7] Multi-granularity evolution analysis of software using complex network theory
    Pan, Weifeng
    Li, Bing
    Ma, Yutao
    Liu, Jing
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2011, 24 (06) : 1068 - 1082
  • [8] Progressive Multi-granularity Analysis for Video Prediction
    Jingwei Xu
    Bingbing Ni
    Xiaokang Yang
    [J]. International Journal of Computer Vision, 2021, 129 : 601 - 618
  • [9] Progressive Multi-granularity Analysis for Video Prediction
    Xu, Jingwei
    Ni, Bingbing
    Yang, Xiaokang
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (03) : 601 - 618
  • [10] Multi-granularity Prediction for Scene Text Recognition
    Wang, Peng
    Da, Cheng
    Yao, Cong
    [J]. COMPUTER VISION - ECCV 2022, PT XXVIII, 2022, 13688 : 339 - 355