Comodules and Landweber exact homology theories

被引:27
|
作者
Hovey, M
Strickland, N
机构
[1] Wesleyan Univ, Dept Math, Middletown, CT 06459 USA
[2] Univ Sheffield, Dept Pure Math, Sheffield S3 7RH, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Hopf algebroid; comodule; Landweber exact; localization; torsion theory; stable homotopy theory; Brown-Peterson homology; Johnson-Wilson homology; landweber filtration;
D O I
10.1016/j.aim.2004.04.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, if E is a commutative MU-algebra spectrum such that E-* is Landweber exact over MU, then the category of E*E-comodules is equivalent to a localization of the category of MU*MU-comodules. This localization depends only on the heights of E at the integer primes p. It follows, for example, that the category of E(n)(*)E(n)-comodules is equivalent to the category of (v(n)(-1) BP)(*)(v(n)(-1) BP)-comodules. These equivalences give simple proofs and generalizations of the Miller-Ravenel and Morava change of rings theorems. We also deduce structural results about the category of E*E-comodules. We prove that every E*E-comodule has a primitive, we give a classification of invariant prime ideals in E-*, and we give a version of the Landweber filtration theorem. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:427 / 456
页数:30
相关论文
共 50 条