Supervised Learning Used in Automatic EEG Graphoelements Classification

被引:0
|
作者
Schaabova, Hana [1 ]
Krajca, Vladimir [1 ,2 ,3 ]
Sedlmajerova, Vaclava [1 ,3 ]
Bukhtaieva, Olena [1 ]
Petranek, Svojmil [2 ,3 ]
机构
[1] Czech Tech Univ, Fac Biomed Engn, Prague, Czech Republic
[2] Hosp Na Bulovce, Dept Neurol, Prague, Czech Republic
[3] Natl Inst Mental Hlth, Prague, Czech Republic
关键词
EEG classification; supervised learning; adaptive segmentation; artifacts; epileptic EEG; ADAPTIVE SEGMENTATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The comparison of supervised (k-nearest neighbors) and unsupervised (k-means) methods for automatic classification of EEG grapholements is presented here. The resulting classes should distinguish EEG impulse artifacts, epileptic EEG, EMG activity, normal EEG and many more. The classified EEG graphoelements are visualized in the original multi-channel EEG recording by coloring the EEG graphoelements itselves according to the class they belong to. The temporal profiles of the EEG recording are plotted. The whole procedure of classification begins with adaptive segmentation of EEG graphoelements and feature extraction followed by classification. This data processing approach ends in colored graphoelements according to class directly in the EEG recording, which is suggested to the electroencephalographer for more effective multi-channel EEG analysis.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] DETECTION AND CLASSIFICATION OF GRAPHOELEMENTS IN EEG SIGNALS
    BERKA, P
    [J]. PHYSIOLOGIA BOHEMOSLOVACA, 1986, 35 (04): : 346 - 347
  • [2] Pattern recognition of epileptic EEG graphoelements with adaptive segmentation, supervised and unsupervised learning algorithms
    Krajca, Vladimir
    Hozman, Jiri
    Mohylova, Jitka
    Petranek, Svojmil
    [J]. BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2012, 57 : 100 - 100
  • [3] Multicenter intracranial EEG dataset for classification of graphoelements and artifactual signals
    Petr Nejedly
    Vaclav Kremen
    Vladimir Sladky
    Jan Cimbalnik
    Petr Klimes
    Filip Plesinger
    Filip Mivalt
    Vojtech Travnicek
    Ivo Viscor
    Martin Pail
    Josef Halamek
    Benjamin H. Brinkmann
    Milan Brazdil
    Pavel Jurak
    Gregory Worrell
    [J]. Scientific Data, 7
  • [4] Multicenter intracranial EEG dataset for classification of graphoelements and artifactual signals
    Nejedly, Petr
    Kremen, Vaclav
    Sladky, Vladimir
    Cimbalnik, Jan
    Klimes, Petr
    Plesinger, Filip
    Mivalt, Filip
    Travnicek, Vojtech
    Viscor, Ivo
    Pail, Martin
    Halamek, Josef
    Brinkmann, Benjamin H.
    Brazdil, Milan
    Jurak, Pavel
    Worrell, Gregory
    [J]. SCIENTIFIC DATA, 2020, 7 (01)
  • [5] An improved self-supervised learning for EEG classification
    Ou, Yanghan
    Sun, Siqin
    Gan, Haitao
    Zhou, Ran
    Yang, Zhi
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (07) : 6907 - 6922
  • [6] Scoring of graphoelements in the sleep EEG
    Geisler, P.
    [J]. JOURNAL OF SLEEP RESEARCH, 2006, 15 : 241 - 241
  • [7] Automatic Patents Classification Using Supervised Machine Learning
    Shahid, Muhammad
    Ahmed, Adeel
    Mushtaq, Muhammad Faheem
    Ullah, Saleem
    Matiullah
    Akram, Urooj
    [J]. RECENT ADVANCES ON SOFT COMPUTING AND DATA MINING (SCDM 2020), 2020, 978 : 297 - 307
  • [8] Automatic classification of EEG signals via deep learning
    Wu, Tao
    Kong, Xiangzeng
    Wang, Yiwen
    Yang, Xue
    Liu, Jingxuan
    Qi, Jun
    [J]. 2021 IEEE 19TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2021,
  • [9] Robustness in Supervised Learning Based Blind Automatic Modulation Classification
    Rahman, Md Abdur
    Haniz, Azril
    Kim, Minseok
    Takada, Jun-ichi
    [J]. IEICE TRANSACTIONS ON COMMUNICATIONS, 2013, E96B (04) : 1030 - 1038
  • [10] Survey on supervised machine learning techniques for automatic text classification
    Kadhim, Ammar Ismael
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2019, 52 (01) : 273 - 292