Cytochrome b-559 in photosystem II reaction center was purified from spinach (Spinacia oleracea L.) and rice (Oryza sativa L.) by a rapid and simple procedure. Their low temperature fluorescence emission and excitation spectra, ultraviolet fluorescence spectra and absolute absorption spectra were presented. The author's purification methods, which enhanced the yield of pure protein and shorted the time for isolation, have several advantages: 1. use of oxygen-evolving PS IT core complexes as the starting material in order to avoid disturbing from other cytochromes; 2. isocratic elution of cytochrome b-559 from a DEAE-Sephacel column for eliminating the impurity and yielding the protein in pure state; 3. a simple column procedure for removal of excess Triton X-100. Purified cytochromes b-559 from these species have similar optical spectra and mobility during gel. electrophoresis under native conditions. From the results of novel electrophoresis (Tricine-SDS-PAGE), cytochrome b-559 from both spinach and rice reveal two polypeptide bands (apparent molecular weight 9 kD and 4 kD, respectively). By measuring of 77 K fluorescence spectra, it was shown that for the purified cytochrome b-559 there were two excitation peaks at 439 nm and 413 nm, and two emission peaks at 563 nm and 668 nm. This is the first indication that Cyt b-559 is able to emit fluorescence and also transfer excited electrons to chlorophyll. By the use of ultraviolet fluorescence spectra, it was demonstrated for the first time that the location of Trp residue could be in the hydrophobic transmembrane region of cytochrome b-559.