New Hermite-Hadamard Inequalities for Convex Fuzzy-Number-Valued Mappings via Fuzzy Riemann Integrals

被引:11
|
作者
Khan, Muhammad Bilal [1 ]
Santos-Garcia, Gustavo [2 ,3 ]
Noor, Muhammad Aslam [1 ]
Soliman, Mohamed S. [4 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Islamabad 44000, Pakistan
[2] Univ Salamanca, Fac Econ & Empresa, Salamanca 37007, Spain
[3] Univ Salamanca, Multidisciplinary Inst Enterprise IME, Salamanca 37007, Spain
[4] Taif Univ, Coll Engn, Dept Elect Engn, POB 11099, Taif 21944, Saudi Arabia
关键词
fuzzy-number-valued mapping; fuzzy Riemann integral; convex fuzzy number valued mapping; Hermite-Hadamard inequality; Hermite-Hadamard-Fejer inequality; BOUNDS; CONCAVITY; TERMS;
D O I
10.3390/math10183251
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study uses fuzzy order relations to examine Hermite-Hadamard inequalities (-inequalities) for convex fuzzy-number-valued mappings (FNVMs). The Kulisch-Miranker order relation, which is based on interval space, is used to define this fuzzy order relation which is defined level-wise. By utilizing this idea, several novel- and-Fejer-type inequalities are established in the fuzzy environment via convex FNVMs. Additional novel-type inequalities for the product of convex FNVMs are also found and proven with the use of practical examples. Additionally, certain unique situations that can be seen as applications of fuzzy-inequalities are presented. The ideas and methods presented in this work might serve as a springboard for more study in this field.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] The New Versions of Hermite-Hadamard Inequalities for Pre-invex Fuzzy-Interval-Valued Mappings via Fuzzy Riemann Integrals
    Khan, Muhammad Bilal
    Noor, Muhammad Aslam
    Zaini, Hatim Ghazi
    Santos-Garcia, Gustavo
    Soliman, Mohamed S.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2022, 15 (01)
  • [2] The New Versions of Hermite–Hadamard Inequalities for Pre-invex Fuzzy-Interval-Valued Mappings via Fuzzy Riemann Integrals
    Muhammad Bilal Khan
    Muhammad Aslam Noor
    Hatim Ghazi Zaini
    Gustavo Santos-García
    Mohamed S. Soliman
    [J]. International Journal of Computational Intelligence Systems, 15
  • [3] Generalized Harmonically Convex Fuzzy-Number-Valued Mappings and Fuzzy Riemann-Liouville FractionalIntegral Inequalities
    Khan, Muhammad Bilal
    Rakhmangulov, Aleksandr
    Aloraini, Najla
    Noor, Muhammad Aslam
    Soliman, Mohamed S.
    [J]. MATHEMATICS, 2023, 11 (03)
  • [4] Some New Estimates of Fuzzy Integral Inequalities for Harmonically Convex Fuzzy-Number-Valued Mappings via up and down Fuzzy Relation
    Khan, Muhammad Bilal
    Rahman, Aziz Ur
    Maash, Abdulwadoud A.
    Treanta, Savin
    Soliman, Mohamed S.
    [J]. AXIOMS, 2023, 12 (04)
  • [5] ON THE HERMITE-HADAMARD INEQUALITIES FOR CONVEX FUNCTIONS VIA HADAMARD FRACTIONAL INTEGRALS
    Peng, Shan
    Wei, Wei
    Wang, JinRong
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2014, 29 (01): : 55 - 75
  • [6] New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function
    Yang, Yanping
    Saleem, Muhammad Shoaib
    Nazeer, Waqas
    Shah, Ahsan Fareed
    [J]. AIMS MATHEMATICS, 2021, 6 (11): : 12260 - +
  • [7] Hermite-Hadamard Type Inequalities for Harmonically-convex Functions Using Fuzzy Integrals
    Latif, Muhammad Amer
    Du, Tingsong
    [J]. FILOMAT, 2022, 36 (12) : 4099 - 4110
  • [8] New Hermite-Hadamard Type Inequalities for Convex Mappings Utilizing Generalized Fractional Integrals
    Budak, Huseyin
    [J]. FILOMAT, 2019, 33 (08) : 2329 - 2344
  • [9] Hermite-Hadamard inequality for fuzzy integrals
    Caballero, J.
    Sadarangani, K.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (06) : 2134 - 2138
  • [10] A New Class of Coordinated Non-Convex Fuzzy-Number-Valued Mappings with Related Inequalities and Their Applications
    Rakhmangulov, Aleksandr
    Aljohani, A. F.
    Mubaraki, Ali
    Althobaiti, Saad
    [J]. AXIOMS, 2024, 13 (06)