Exponential Decay of Energy for Some Nonlinear Hyperbolic Equations with Strong Dissipation

被引:2
|
作者
Ye, Yaojun [1 ]
机构
[1] Zhejiang Univ Sci & Technol, Dept Math & Informat Sci, Hangzhou 310023, Zhejiang, Peoples R China
关键词
ASYMPTOTIC-BEHAVIOR; EVOLUTION-EQUATIONS; GLOBAL EXISTENCE; NONEXISTENCE;
D O I
10.1155/2010/357404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The initial boundary value problem for a class of hyperbolic equations with strong dissipative term u(tt) - Sigma(n)(t=1)(partial derivative/partial derivative x(i))(|partial derivative u/partial derivative x(i)|(p-2)(partial derivative u/partial derivative x(i)))-a Delta u(t) = b|u|(r-2)u in a bounded domain is studied. The existence of global solutions for this problem is proved by constructing a stable set inW(0)(1,p) (Omega) and showing the exponential decay of the energy of global solutions through the use of an important lemma of V. Komornik.
引用
收藏
页数:12
相关论文
共 50 条