Defect-induced ferromagnetism in a S=1/2 quasi-one-dimensional Heisenberg antiferromagnetic chain compound

被引:2
|
作者
Wang, Zhe [1 ,2 ]
Hu, Lin [1 ,3 ]
Lin, Langsheng [1 ]
Han, Yuyan [1 ]
Hao, Ning [1 ]
Xu, Jingtao [4 ]
Chen, Qianwang [1 ,5 ]
Qu, Zhe [1 ,3 ]
机构
[1] Chinese Acad Sci, Hefei Inst Phys Sci, High Field Magnet Lab, Anhui Key Lab Condensed Matter Phys Extreme Condi, Hefei 230031, Anhui, Peoples R China
[2] Univ Sci & Technol China, Grad Sch, Sci Isl Branch, Hefei 230026, Anhui, Peoples R China
[3] Chinese Acad Sci, Hefei Inst Phys Sci, CAS Key Lab Photovolta & Energy Conservat Mat, Hefei 230031, Anhui, Peoples R China
[4] Ningbo Ruiling Adv Energy Mat Inst Co Ltd, Ningbo 315500, Zhejiang, Peoples R China
[5] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
MAGNETIC-BEHAVIOR; PHASE-TRANSITION;
D O I
10.1038/s41598-021-93930-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present evidences that defects in the spin S=1/2 Heisenberg antiferromagnetic chain (HAFC) compound can lead to ferromagnetism by studying the magnetic and thermal properties of the newly discovered quasi-one-dimensional (1D) metal-organic framework [CH3NH3][Cu(HCOO)(3)] (MACuF). Our findings suggest that the long-range ferromagnetic order at 3.7 K can be attributed to Cu2+ ions from the 2D networks constructed by the endpoints of the broken chains. In such a case, the intrinsic magnetism can emerge in this quasi-1D Heisenberg chain system at the background of the short-range antiferromagnetism. This unusual ferromagnetism found in HAFC not only enriches magnetic features in the low-dimensional systems, but helps to understand some of the exotic magnetic phenomena in other real quasi-1D magnetic materials.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Defect-induced ferromagnetism in a S = 1/2 quasi-one-dimensional Heisenberg antiferromagnetic chain compound
    Zhe Wang
    Lin Hu
    Langsheng Lin
    Yuyan Han
    Ning Hao
    Jingtao Xu
    Qianwang Chen
    Zhe Qu
    Scientific Reports, 11
  • [2] Quasi-one-dimensional Heisenberg antiferromagnetic model for an organic polymeric chain
    Wu, F.
    Wang, W. Z.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (15) : 3837 - 3844
  • [3] DEFECT-INDUCED GAP STATES IN QUASI-ONE-DIMENSIONAL SYSTEMS
    SPRINGBORG, M
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1994, 95 (03): : 363 - 378
  • [4] The effect of magnetic frustrations in a structure of Quasi-One-Dimensional Heisenberg antiferromagnetic chain
    Cui, L.
    Wang, F.
    Zhang, S. J.
    Hu, Y. J.
    PHYSICA B-CONDENSED MATTER, 2014, 451 : 12 - 15
  • [5] Quasi-one-dimensional S=1/2 Heisenberg antiferromagnetic chain consisting of the organic radical p-Br-V
    Iwase, Kenji
    Yamaguchi, Hironori
    Ono, Toshio
    Hosokoshi, Yuko
    Shimokawa, Tokuro
    Kono, Yohei
    Kittaka, Shunichiro
    Sakakibara, Toshiro
    Matsuo, Akira
    Kindo, Koichi
    PHYSICAL REVIEW B, 2013, 88 (18)
  • [6] CuSiO3:: A quasi-one-dimensional S=1/2 antiferromagnetic chain system
    Baenitz, M
    Geibel, C
    Dischner, M
    Sparn, G
    Steglich, F
    Otto, HH
    Meibohm, M
    Gippius, AA
    PHYSICAL REVIEW B, 2000, 62 (18) : 12201 - 12205
  • [7] AgCuVO4: A quasi-one-dimensional S=1/2 chain compound
    Moeller, A.
    Schmitt, M.
    Schnelle, W.
    Foerster, T.
    Rosner, H.
    PHYSICAL REVIEW B, 2009, 80 (12)
  • [8] PHASE-DIAGRAM OF S=1/2 QUASI-ONE-DIMENSIONAL HEISENBERG-MODEL WITH DIMERIZED ANTIFERROMAGNETIC EXCHANGE
    KATOH, N
    IMADA, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1994, 63 (12) : 4529 - 4541
  • [9] Calculation of Neel temperature for S=1/2 Heisenberg quasi-one-dimensional antiferromagnets
    Irkhin, VY
    Katanin, AA
    PHYSICAL REVIEW B, 2000, 61 (10) : 6757 - 6764
  • [10] BaCu2Si2O7:: A quasi-one-dimensional S=1/2 antiferromagnetic chain system
    Tsukada, I
    Sasago, Y
    Uchinokura, K
    Zheludev, A
    Maslov, S
    Shirane, G
    Kakurai, K
    Ressouche, E
    PHYSICAL REVIEW B, 1999, 60 (09): : 6601 - 6607