Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries

被引:402
|
作者
Liu, Zhiming [1 ]
Yu, Xin-Yao [1 ,2 ]
Lou, Xiong Wen [2 ,3 ]
Paik, Ungyu [1 ]
机构
[1] Hanyang Univ, Dept Energy Engn, 222 Wangsimni Ro, Seoul 04763, South Korea
[2] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[3] Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore
基金
新加坡国家研究基金会;
关键词
HIGH-PERFORMANCE ANODE; NA-ION; ELECTROCHEMICAL PROPERTIES; RATE CAPABILITY; LITHIUM; MICROSPHERES; NANOCRYSTALS; NANOSHEETS; BEHAVIOR; HYBRID;
D O I
10.1039/c6ee01501h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Antimony (Sb) is an attractive anode material for sodium-ion batteries (SIBs) with a high theoretical capacity of 660 mAh g(-1). However, its practical application is greatly hindered by the rapid capacity fading which is largely due to the large volume expansion during sodiation. Tuning the morphology and structure at the nano-scale or using carbonaceous materials as the buffer layer is essential to address this issue. Here, a facile carbon-coating coupled with a thermal-reduction strategy has been developed to synthesize unique Sb@C coaxial nanotubes. With different annealing time, the hollow space and the amount of Sb inside the tube can be easily tuned by the partial evaporation of Sb. The as-obtained Sb@C nanotubes exhibit excellent sodium storage properties. The remarkable electrochemical performance results from the unique coaxial nanoarchitecture. Specifically, it delivers a high specific capacity of 407 mAh g(-1) at 100 mA g(-1) after 240 cycles. Furthermore, a stable capacity of 240 mAh g(-1) can be retained at 1.0 A g(-1) even after 2000 cycles. Most importantly, high capacities of 350 mAh g(-1) and 310 mAh g(-1) can be achieved at large current densities of 10 and 20 A g(-1), respectively, which represents the best rate performance among the reported Sb-based anode materials.
引用
收藏
页码:2314 / 2318
页数:5
相关论文
共 50 条
  • [1] FeSe2@C Microrods as a Superior Long-Life and High-Rate Anode for Sodium Ion Batteries
    Pan, Qichang
    Zhang, Man
    Zhang, Lixuan
    Li, Yahao
    Li, Yu
    Tan, Chunlei
    Zheng, Fenghua
    Huang, Youguo
    Wang, Hongqiang
    Li, Qingyu
    ACS NANO, 2020, 14 (12) : 17683 - 17692
  • [2] Microsized Gray Tin as a High-Rate and Long-Life Anode Material for Advanced Sodium-Ion Batteries
    Zhu, Yansong
    Yao, Qian
    Shao, Ruiwen
    Wang, Cheng
    Yan, Weishan
    Ma, Jizhen
    Liu, Duo
    Yang, Jian
    Qian, Yitai
    Nano Letters, 2022, 22 (19): : 7976 - 7983
  • [3] Microsized Gray Tin as a High-Rate and Long-Life Anode Material for Advanced Sodium-Ion Batteries
    Zhu, Yansong
    Yao, Qian
    Shao, Ruiwen
    Wang, Cheng
    Yan, Weishan
    Ma, Jizhen
    Liu, Duo
    Yang, Jian
    Qian, Yitai
    NANO LETTERS, 2022, : 7976 - 7983
  • [4] Amorphous Sb2S3 embedded in graphite: a high-rate, long-life anode material for sodium-ion batteries
    Zhao, Yubao
    Manthiram, Arumugam
    CHEMICAL COMMUNICATIONS, 2015, 51 (67) : 13205 - 13208
  • [5] CuS Microspheres with Tunable Interlayer Space and Micropore as a High-Rate and Long-Life Anode for Sodium-Ion Batteries
    Xiao, Yuanhua
    Su, Dangcheng
    Wang, Xuezhao
    Wu, Shide
    Zhou, Liming
    Shi, Ying
    Fang, Shaoming
    Cheng, Hui-Ming
    Li, Feng
    ADVANCED ENERGY MATERIALS, 2018, 8 (22)
  • [6] Ionic liquid electrolytes with high sodium ion fraction for high-rate and long-life sodium secondary batteries
    Chen, Chih-Yao
    Kiko, Tomohiro
    Hosokawa, Takafumi
    Matsumoto, Kazuhiko
    Nohira, Toshiyuki
    Hagiwara, Rika
    JOURNAL OF POWER SOURCES, 2016, 332 : 51 - 59
  • [7] Hierarchical ZnS-SnS2 @C nanocomposite as superior-rate and long-life anode for sodium ion batteries
    Wei, Han-xin
    Wang, Zhen-yu
    Tang, Lin-bo
    Yan, Cheng
    Mao, Jing
    Dai, Ke-hua
    Gao, Li-Mo
    Zheng, Jun-chao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 953
  • [8] Nanoarchitectures of tin based alloys as the high-rate and long-life anode for lithium-ion batteries
    Zhou, Xiao-Dong
    Ke, F. S.
    Wei, G. Z.
    Zhang, B.
    Xue, L. J.
    He, Y.
    Huang, L.
    Li, J. T.
    Sun, S. G.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [9] Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries
    Zhang, Ning
    Zhao, Qing
    Han, Xiaopeng
    Yang, Jingang
    Chen, Jun
    NANOSCALE, 2014, 6 (05) : 2827 - 2832
  • [10] Hierarchical core-shell α-Fe2O3@C nanotubes as a high-rate and long-life anode for advanced lithium ion batteries
    Gu, Xin
    Chen, Liang
    Liu, Shuo
    Xu, Huayun
    Yang, Jian
    Qian, Yitai
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (10) : 3439 - 3444