Phase regression approach for estimating the parameters of a noisy multifrequency signal

被引:8
|
作者
Zhu, L [1 ]
Ding, H
Ding, K
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200030, Peoples R China
[2] S China Univ Technol, Coll Traff & Commun, Guangzhou 510641, Peoples R China
来源
关键词
D O I
10.1049/ip-vis:20040676
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel approach for estimating the parameters of a multifrequency signal from discrete samples corrupted by additive noise is presented. An established mathematical model indicates that noise influence on the discrete phase and amplitude spectra is equivalent to additive phase and amplitude noise, respectively. On this basis, a simple algorithm is proposed to estimate the frequency and phase of each sinusoid component by linear regression on the phase spectra of segmented signal blocks, while an amplitude estimator is directly derived from the spectrum of the window function. The circular nature of the phase spectrum is thoroughly explored. Also, an algorithmic scheme is presented. The derived variances of the estimators show that for a noisy signal this approach provides superior accuracy over the traditional approaches. Simulations and engineering application confirm the validity of the presented method.
引用
收藏
页码:411 / 420
页数:10
相关论文
共 50 条
  • [1] ESTIMATING A SIGNAL WITH NOISY NUISANCE PARAMETERS
    RITOV, Y
    [J]. BIOMETRIKA, 1989, 76 (01) : 31 - 37
  • [2] Estimating foot inertial parameters: A new regression approach
    El Helou, A.
    Gracies, J. M.
    Decq, P.
    Skalli, W.
    [J]. CLINICAL BIOMECHANICS, 2012, 27 (03) : 299 - 305
  • [3] Multifrequency SAR data for estimating hydrological parameters
    Paloscia, S
    Pampaloni, P
    Macelloni, G
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-COLLOQUIA ON PHYSICS, 2001, 24 (01): : 41 - 52
  • [4] Estimating hydrological parameters with multifrequency SAR data
    Paloscia, S
    Macelloni, G
    Pampaloni, P
    Sigismondi, S
    [J]. IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 1260 - 1262
  • [5] Estimating random signal parameters from noisy images with nuisance parameters: linear and scanning-linear methods
    Whitaker, Meredith Kathryn
    Clarkson, Eric
    Barrett, Harrison H.
    [J]. OPTICS EXPRESS, 2008, 16 (11) : 8150 - 8173
  • [6] A nonlinear regression approach to estimating signal detection models for rating data
    Ching-Fan Sheu
    Andrew Heathcote
    [J]. Behavior Research Methods, Instruments, & Computers, 2001, 33 : 108 - 114
  • [7] A nonlinear regression approach to estimating signal detection models for rating data
    Sheu, CF
    Heathcote, A
    [J]. BEHAVIOR RESEARCH METHODS INSTRUMENTS & COMPUTERS, 2001, 33 (02): : 108 - 114
  • [8] ESTIMATING EPIDEMIOLOGIC PARAMETERS BY REGRESSION
    SMITH, D
    [J]. JOURNAL OF CHRONIC DISEASES, 1987, 40 (08): : 827 - 828
  • [9] ESTIMATING THE FREQUENCY OF A NOISY SINUSOID BY LINEAR-REGRESSION
    TRETTER, SA
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (06) : 832 - 835
  • [10] Nonlinear regression approach to estimating Johnson SB parameters for diameter data
    Abd Kudus, K
    Ahmad, MI
    Lapongan, J
    [J]. CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 1999, 29 (03): : 310 - 314