Untangling polygonal and polyhedral meshes via mesh optimization

被引:3
|
作者
Kim, Jibum [1 ]
Chung, Jaeyong [2 ]
机构
[1] Incheon Natl Univ, Dept Comp Sci & Engn, Inchon 406772, South Korea
[2] Incheon Natl Univ, Dept Elect Engn, Inchon 406772, South Korea
关键词
Mesh optimization; Mesh untangling; Polyhedral mesh; Polygonal mesh; Computer graphics; QUALITY; FRAMEWORK;
D O I
10.1007/s00366-014-0379-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose simple and efficient optimization-based untangling strategies for 2D polygonal and 3D polyhedral meshes. The first approach uses a size-based mesh metric, which eliminates inverted elements by averaging element size over the entire mesh. The second method uses a hybrid quality metric, which untangles inverted elements by simultaneously averaging element size and improving element shape. The last method using a variant of the hybrid quality metric gives a high penalty for inverted elements and employs an adaptive sigmoid function for handling various mesh sizes. Numerical experiments are presented to show the effectiveness of the proposed untangling strategies for various 2D polygonal and 3D polyhedral meshes.
引用
收藏
页码:617 / 629
页数:13
相关论文
共 50 条
  • [1] Untangling polygonal and polyhedral meshes via mesh optimization
    Jibum Kim
    Jaeyong Chung
    [J]. Engineering with Computers, 2015, 31 : 617 - 629
  • [2] The Diamond Laplace for Polygonal and Polyhedral Meshes
    Bunge, A.
    Botsch, M.
    Alexa, M.
    [J]. COMPUTER GRAPHICS FORUM, 2021, 40 (05) : 217 - 230
  • [3] A freeform shape optimization of complex structures represented by arbitrary polygonal or polyhedral meshes
    Shen, J
    Yoon, D
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 60 (15) : 2441 - 2466
  • [4] Boolean operations on arbitrary polygonal and polyhedral meshes
    Landier, Sam
    [J]. COMPUTER-AIDED DESIGN, 2017, 85 : 138 - 153
  • [5] Mixed finite element method on polygonal and polyhedral meshes
    Kuznetsov, Y
    Repin, S
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 615 - 622
  • [6] A simple adaptive mesh refinement scheme for topology optimization using polygonal meshes
    Thomás Y. S. Hoshina
    Ivan F. M. Menezes
    Anderson Pereira
    [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40
  • [7] A simple adaptive mesh refinement scheme for topology optimization using polygonal meshes
    Hoshina, Thomas Y. S.
    Menezes, Ivan F. M.
    Pereira, Anderson
    [J]. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2018, 40 (07)
  • [8] Recovered finite element methods on polygonal and polyhedral meshes
    Dong, Zhaonan
    Georgoulis, Emmanuil H.
    Pryer, Tristan
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (04): : 1309 - 1337
  • [9] Untangling all-hex meshes via adaptive boundary optimization
    Huang, Qing
    Zhang, Wen-Xiang
    Wang, Qi
    Liu, Ligang
    Fu, Xiao-Ming
    [J]. GRAPHICAL MODELS, 2022, 121
  • [10] A family of mimetic finite difference methods on polygonal and polyhedral meshes
    Brezzi, F
    Lipnikov, K
    Simoncini, V
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (10): : 1533 - 1551