Covariance identities for exponential and related distributions

被引:1
|
作者
Rao, BLSP [1 ]
机构
[1] Indian Stat Inst, New Delhi 110016, India
关键词
exponential distribution; characterization; covariance identity;
D O I
10.1016/S0167-7152(98)00222-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bobkov and Houdre (1997) proved that if xi, eta and zeta are independent standard exponential random variables, then for any two absolutely continuous functions f and g such that E\f(xi)\(2) < infinity and E\g(xi)\(2) < infinity, the equality Cov(f(xi),g(xi)) = Ef'(xi + eta)g'(xi + zeta) holds. We prove that the identity holds if and only if xi, eta and zeta or -xi, -eta and -zeta are standard exponential random variables. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:305 / 311
页数:7
相关论文
共 50 条