A Fast-Adaptive Support Vector Method for Full-Pixel Anomaly Detection in Hyperspectral Images

被引:3
|
作者
Khazai, Safa [1 ]
Safari, Abdolreza [1 ]
Mojaradi, Barat [2 ]
Homayouni, Saeid [1 ]
机构
[1] Univ Tehran, Dept Surveying & Geomat Engn, Univ Coll Engn, Tehran 14395515, Iran
[2] Iran Univ Sci & Technol, Tehran, Iran
关键词
Anomaly detection; Hyperspectral images; Full-pixel targets; Support Vector Data Description (SVDD);
D O I
10.1109/IGARSS.2011.6049461
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The general objective of anomaly detection (AD) in hyperspectral imagery is to detect full-pixel targets. To meet this purpose, the global AD methods can achieve more reliable results than the local methods in terms of time and accuracy. The kernel-based Support Vector Data Description (SVDD) has recently received great attention in the hyperspectral AD applications. This paper presents a global SVDD-based method for autonomous full-pixel AD. The method consists of three steps: clustering, background modeling, and autonomous AD. Experimental results on a hyperspectral dataset show the superiority of the proposed method comparing to the global-based SVDD method.
引用
收藏
页码:1763 / 1766
页数:4
相关论文
共 50 条
  • [1] Anomaly Detection in Hyperspectral Images Based on an Adaptive Support Vector Method
    Khazai, Safa
    Homayouni, Saeid
    Safari, Abdolreza
    Mojaradi, Barat
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (04) : 646 - 650
  • [2] Adaptive detection algorithm for full pixel targets in hyperspectral images
    Acito, N
    Corsini, G
    Diani, M
    [J]. IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2005, 152 (06): : 731 - 740
  • [3] A support vector method for anomaly detection in hyperspectral imagery
    Banerjee, Amit
    Burlina, Philippe
    Diehl, Chris
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (08): : 2282 - 2291
  • [4] Fast anomaly detection in hyperspectral images with RX method on heterogeneous clusters
    Molero, J. M.
    Paz, A.
    Garzon, E. M.
    Martinez, J. A.
    Plaza, A.
    Garcia, I.
    [J]. JOURNAL OF SUPERCOMPUTING, 2011, 58 (03): : 411 - 419
  • [5] Fast anomaly detection in hyperspectral images with RX method on heterogeneous clusters
    J. M. Molero
    A. Paz
    E. M. Garzón
    J. A. Martínez
    A. Plaza
    I. García
    [J]. The Journal of Supercomputing, 2011, 58 : 411 - 419
  • [6] ADAPTIVE PIXEL NEIGHBORHOOD DEFINITION FOR THE CLASSIFICATION OF HYPERSPECTRAL IMAGES WITH SUPPORT VECTOR MACHINES AND COMPOSITE KERNEL
    Fauvel, Mathieu
    Chanussot, Jocelyn
    Benediktsson, Jon Atli
    [J]. 2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 1884 - 1887
  • [7] Hybrid anomaly detection method for hyperspectral images
    Fatma Küçük
    [J]. Signal, Image and Video Processing, 2023, 17 : 2755 - 2761
  • [8] Hybrid anomaly detection method for hyperspectral images
    Kucuk, Fatma
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (06) : 2755 - 2761
  • [9] Adaptive Magnetic Anomaly Detection Method Using Support Vector Machine
    Fan, Liming
    Kang, Chong
    Wang, Huigang
    Hu, Hao
    Zhang, Xiaojun
    Liu, Xing
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [10] Support vector data description for fast anomaly detection in hyperspectral imagery based on sample segmentation
    Chen, De-Rong
    Gong, Jiu-Lu
    Chen, Qian
    Cao, Xu-Ping
    [J]. Binggong Xuebao/Acta Armamentarii, 2008, 29 (09): : 1049 - 1053