Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments

被引:0
|
作者
Lowe, Ryan [1 ,2 ]
Wu, Yi [3 ]
Tamar, Aviv [3 ]
Harb, Jean [1 ,2 ]
Abbeel, Pieter [2 ,3 ]
Mordatch, Igor [2 ]
机构
[1] McGill Univ, Montreal, PQ H3A 2T5, Canada
[2] OpenAI, San Francisco, CA 94110 USA
[3] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We explore deep reinforcement learning methods for multi-agent domains. We begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is challenged by an inherent non-stationarity of the environment, while policy gradient suffers from a variance that increases as the number of agents grows. We then present an adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multi-agent coordination. Additionally, we introduce a training regimen utilizing an ensemble of policies for each agent that leads to more robust multi-agent policies. We show the strength of our approach compared to existing methods in cooperative as well as competitive scenarios, where agent populations are able to discover various physical and informational coordination strategies.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A New Advantage Actor-Critic Algorithm For Multi-Agent Environments
    Paczolay, Gabor
    Harmati, Istvan
    [J]. 2020 23RD IEEE INTERNATIONAL SYMPOSIUM ON MEASUREMENT AND CONTROL IN ROBOTICS (ISMCR), 2020,
  • [2] Multi-Agent Actor-Critic for Cooperative Resource Allocation in Vehicular Networks
    Hammami, Nessrine
    Nguyen, Kim Khoa
    [J]. PROCEEDINGS OF THE 2022 14TH IFIP WIRELESS AND MOBILE NETWORKING CONFERENCE (WMNC 2022), 2022, : 93 - 100
  • [3] Hierarchical relationship modeling in multi-agent reinforcement learning for mixed cooperative-competitive environments
    Xie, Shaorong
    Li, Yang
    Wang, Xinzhi
    Zhang, Han
    Zhang, Zhenyu
    Luo, Xiangfeng
    Yu, Hang
    [J]. INFORMATION FUSION, 2024, 108
  • [4] Bias Estimation Correction in Multi-Agent Reinforcement Learning for Mixed Cooperative-Competitive Environments
    Sarkar T.
    Kalita S.
    [J]. SN Computer Science, 5 (1)
  • [5] B -Level Actor-Critic for Multi-Agent Coordination
    Zhang, Haifeng
    Chen, Weizhe
    Huang, Zeren
    Li, Minne
    Yang, Yaodong
    Zhang, Weinan
    Wang, Jun
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 7325 - 7332
  • [6] Mixed Cooperative-Competitive Communication Using Multi-agent Reinforcement Learning
    Vanneste, Astrid
    Van Wijnsberghe, Wesley
    Vanneste, Simon
    Mets, Kevin
    Mercelis, Siegfried
    Latre, Steven
    Hellinckx, Peter
    [J]. ADVANCES ON P2P, PARALLEL, GRID, CLOUD AND INTERNET COMPUTING, 3PGCIC-2021, 2022, 343 : 197 - 206
  • [7] Divergence-Regularized Multi-Agent Actor-Critic
    Su, Kefan
    Lu, Zongqing
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [8] Actor-Critic Algorithms for Constrained Multi-agent Reinforcement Learning
    Diddigi, Raghuram Bharadwaj
    Reddy, D. Sai Koti
    Prabuchandran, K. J.
    Bhatnagar, Shalabh
    [J]. AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1931 - 1933
  • [9] Multi-Agent Natural Actor-Critic Reinforcement Learning Algorithms
    Prashant Trivedi
    Nandyala Hemachandra
    [J]. Dynamic Games and Applications, 2023, 13 : 25 - 55
  • [10] Improving sample efficiency in Multi-Agent Actor-Critic methods
    Ye, Zhenhui
    Chen, Yining
    Jiang, Xiaohong
    Song, Guanghua
    Yang, Bowei
    Fan, Sheng
    [J]. APPLIED INTELLIGENCE, 2022, 52 (04) : 3691 - 3704