DETECTING URBAN CHANGES WITH RECURRENT NEURAL NETWORKS FROM MULTITEMPORAL SENTINEL-2 DATA

被引:0
|
作者
Papadomanolaki, Maria [1 ,2 ,3 ]
Verma, Sagar [2 ,3 ,4 ]
Vakalopoulou, Maria [2 ,3 ]
Gupta, Siddharth [4 ]
Karantzalos, Konstantinos [1 ]
机构
[1] Natl Tech Univ Athens, Remote Sensing Lab, Athens, Greece
[2] Univ Paris Saclay, Cent Supelec, CVN, St Aubin, France
[3] INRIA Saclay, Palaiseau, France
[4] Granular AI, Somerville, MA 02144 USA
关键词
change detection; fully-convolutional; urban; recurrent networks; multi-temporal modeling; high resolution satellite imagery;
D O I
10.1109/igarss.2019.8900330
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The advent of multitemporal high resolution data, like the Copernicus Sentinel-2, has enhanced significantly the potential of monitoring the earth's surface and environmental dynamics. In this paper, we present a novel deep learning framework for urban change detection which combines state-of-the-art fully convolutional networks (similar to U-Net) for feature representation and powerful recurrent networks (such as LSTMs) for temporal modeling. We report our results on the recently publicly available bi-temporal Onera Satellite Change Detection (OSCD) Sentinel-2 dataset, enhancing the temporal information with additional images of the same region on different dates. Moreover, we evaluate the performance of the recurrent networks as well as the use of the additional dates on the unseen test-set using an ensemble crossvalidation strategy. All the developed models during the validation phase have scored an overall accuracy of more than 95%, while the use of LSTMs and further temporal information, boost the F1 rate of the change class by an additional 1.5%.
引用
收藏
页码:214 / 217
页数:4
相关论文
共 50 条
  • [1] Multitemporal Sentinel-2 data - remarks and observations
    Kukawska, Ewa
    Lewinski, Stanislaw
    Krupinski, Michal
    Malinowski, Radoslaw
    Nowakowski, Artur
    Rybicki, Marcin
    Kotarba, Andrzej
    [J]. 2017 9TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2017,
  • [2] Convolutional neural networks for urban green areas semantic segmentation on Sentinel-2 data
    Pesek, Ondrej
    Brodsky, Lukas
    Halounova, Lena
    Landa, Martin
    Boucek, Tomas
    [J]. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2024, 36
  • [3] OmbriaNet-Supervised Flood Mapping via Convolutional Neural Networks Using Multitemporal Sentinel-1 and Sentinel-2 Data Fusion
    Drakonakis, Georgios, I
    Tsagkatakis, Grigorios
    Fotiadou, Konstantina
    Tsakalides, Panagiotis
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 2341 - 2356
  • [4] Supporting the Common Agricultural Policy with Sentinel-2 data and deep recurrent networks
    Campos-Taberner, Manuel
    Javier Garcia-Haro, Francisco
    Martinez, Beatriz
    Sanchez-Ruiz, Sergio
    Amparo Gilabert, Maria
    [J]. REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XXIII, 2021, 11856
  • [5] Extracting Tea Plantations from Multitemporal Sentinel-2 Images Based on Deep Learning Networks
    Yao, Zhongxi
    Zhu, Xiaochen
    Zeng, Yan
    Qiu, Xinfa
    [J]. AGRICULTURE-BASEL, 2023, 13 (01):
  • [6] Convolutional neural networks for detecting challenging cases in cloud masking using Sentinel-2 imagery
    Kristollari, Viktoria
    Karathanassi, Vassilia
    [J]. EIGHTH INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2020), 2020, 11524
  • [7] Detecting Moving Trucks on Roads Using Sentinel-2 Data
    Fisser, Henrik
    Khorsandi, Ehsan
    Wegmann, Martin
    Baier, Frank
    [J]. REMOTE SENSING, 2022, 14 (07)
  • [8] LANDSLIDE GEOHAZARD ASSESSMENT WITH CONVOLUTIONAL NEURAL NETWORKS USING SENTINEL-2 IMAGERY DATA
    Ullo, S. L.
    Langenkamp, M. S.
    Oikarinen, T. P.
    Del Rosso, M. P.
    Sebastianelli, A.
    Piccirillo, F.
    Sica, S.
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9646 - 9649
  • [9] Hayfield Mapping in the Floodplain Landscapes of Southern Russia Based on Multitemporal Sentinel-2 Data
    Vasilchenko, A. A.
    [J]. IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2023, 59 (10) : 1474 - 1482
  • [10] Hayfield Mapping in the Floodplain Landscapes of Southern Russia Based on Multitemporal Sentinel-2 Data
    A. A. Vasilchenko
    [J]. Izvestiya, Atmospheric and Oceanic Physics, 2023, 59 : 1474 - 1482