End-to-End Blind Quality Assessment of Compressed Videos Using Deep Neural Networks

被引:78
|
作者
Liu, Wentao [1 ]
Duanmu, Zhengfang [1 ]
Wang, Zhou [1 ]
机构
[1] Univ Waterloo, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Blind video quality assessment; convolutional neural network; multi-task learning;
D O I
10.1145/3240508.3240643
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Blind video quality assessment (BVQA) algorithms are traditionally designed with a two-stage approach - a feature extraction stage that computes typically hand-crafted spatial and/or temporal features, and a regression stage working in the feature space that predicts the perceptual quality of the video. Unlike the traditional BVQA methods, we propose a Video Multi-task End-to-end Optimized neural Network (V-MEON) that merges the two stages into one, where the feature extractor and the regressor are jointly optimized. Our model uses a multi-task DNN framework that not only estimates the perceptual quality of the test video but also provides a probabilistic prediction of its codec type. This framework allows us to train the network with two complementary sets of labels, both of which can be obtained at low cost. The training process is composed of two steps. In the first step, early convolutional layers are pre-trained to extract spatiotemporal quality-related features with the codec classification subtask. In the second step, initialized with the pre-trained feature extractor, the whole network is jointly optimized with the two subtasks together. An additional critical step is the adoption of 3D convolutional layers, which creates novel spatiotemporal features that lead to a significant performance boost. Experimental results show that the proposed model clearly outperforms state-of-the-art BVQA methods.The source code of V-MEON is available at https://ece.uwaterloo.ca/zduanmu/acmmm2018bvqa.
引用
收藏
页码:546 / 554
页数:9
相关论文
共 50 条
  • [1] End-to-End Blind Image Quality Assessment Using Deep Neural Networks
    Ma, Kede
    Liu, Wentao
    Zhang, Kai
    Duanmu, Zhengfang
    Wang, Zhou
    Zuo, Wangmeng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1202 - 1213
  • [2] END-TO-END BLIND IMAGE QUALITY ASSESSMENT WITH CASCADED DEEP FEATURES
    Wu, Jinjian
    Ma, Jupo
    Liang, Fuhu
    Dong, Weisheng
    Shi, Guangming
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 1858 - 1863
  • [3] End-to-End Blind Image Quality Prediction With Cascaded Deep Neural Network
    Wu, Jinjian
    Ma, Jupo
    Liang, Fuhu
    Dong, Weisheng
    Shi, Guangming
    Lin, Weisi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7414 - 7426
  • [4] End-to-end Stereo Audio Coding Using Deep Neural Networks
    Lim, Wootaek
    Jang, Inseon
    Beack, Seungkwon
    Sung, Jongmo
    Lee, Taejin
    PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 860 - 864
  • [5] End-to-End Multimodal Emotion Recognition Using Deep Neural Networks
    Tzirakis, Panagiotis
    Trigeorgis, George
    Nicolaou, Mihalis A.
    Schuller, Bjorn W.
    Zafeiriou, Stefanos
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2017, 11 (08) : 1301 - 1309
  • [6] END-TO-END SPEECH EMOTION RECOGNITION USING DEEP NEURAL NETWORKS
    Tzirakis, Panagiotis
    Zhang, Jiehao
    Schuller, Bjoern W.
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 5089 - 5093
  • [7] An End-to-End Approach for Seam Carving Detection Using Deep Neural Networks
    Moreira, Thierry P.
    Santana, Marcos Cleison S.
    Passos, Leandro A.
    Papa, Joao Paulo
    da Costa, Kelton Augusto P.
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2022), 2022, 13256 : 447 - 457
  • [8] Deep tracking in the wild: End-to-end tracking using recurrent neural networks
    Dequaire, Julie
    Ondruska, Peter
    Rao, Dushyant
    Wang, Dominic
    Posner, Ingmar
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2018, 37 (4-5): : 492 - 512
  • [9] End-to-End Premature Ventricular Contraction Detection Using Deep Neural Networks
    Kraft, Dimitri
    Bieber, Gerald
    Jokisch, Peter
    Rumm, Peter
    SENSORS, 2023, 23 (20)
  • [10] An End-To-End Flood Stage Prediction System Using Deep Neural Networks
    Windheuser, L.
    Karanjit, R.
    Pally, R.
    Samadi, S.
    Hubig, N. C.
    EARTH AND SPACE SCIENCE, 2023, 10 (01)