Enhancing Grammatical Evolution Through Data Augmentation: Application to Blood Glucose Forecasting

被引:10
|
作者
Manuel Velasco, Jose [1 ]
Garnica, Oscar [1 ]
Contador, Sergio [1 ]
Manuel Colmenar, Jose [2 ]
Maqueda, Esther [3 ]
Botella, Marta [4 ]
Lanchares, Juan [1 ]
Ignacio Hidalgo, J. [1 ]
机构
[1] Univ Complutense Madrid, Madrid, Spain
[2] Univ Rey Juan Carlos, Mostoles, Spain
[3] Hosp Virgen Salud, Toledo, Spain
[4] Hosp U Principe Asturias, Alcala De Henares, Spain
关键词
Grammatical Evolution; Diabetes; Time series forecasting; Data augmentation; Combining systems;
D O I
10.1007/978-3-319-55849-3_10
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Currently, Diabetes Mellitus Type 1 patients are waiting hopefully for the arrival of the Artificial Pancreas (AP) in a near future. AP systems will control the blood glucose of people that suffer the disease, improving their lives and reducing the risks they face everyday. At the core of the AP, an algorithm will forecast future glucose levels and estimate insulin bolus sizes. Grammatical Evolution (GE) has been proved as a suitable algorithm for predicting glucose levels. Nevertheless, one the main obstacles that researches have found for training the GE models is the lack of significant amounts of data. As in many other fields in medicine, the collection of data from real patients is very complex. In this paper, we propose a data augmentation algorithm that generates synthetic glucose time series from real data. The synthetic time series can be used to train a unique GE model or to produce several GE models that work together in a combining system. Our experimental results show that, in a scarce data context, Grammatical Evolution models can get more accurate and robust predictions using data augmentation.
引用
收藏
页码:142 / 157
页数:16
相关论文
共 50 条
  • [1] Combining data augmentation, EDAs and grammatical evolution for blood glucose forecasting
    Jose Manuel Velasco
    Oscar Garnica
    Juan Lanchares
    Marta Botella
    J. Ignacio Hidalgo
    [J]. Memetic Computing, 2018, 10 : 267 - 277
  • [2] Combining data augmentation, EDAs and grammatical evolution for blood glucose forecasting
    Manuel Velasco, Jose
    Garnica, Oscar
    Lanchares, Juan
    Botella, Marta
    Ignacio Hidalgo, J.
    [J]. MEMETIC COMPUTING, 2018, 10 (03) : 267 - 277
  • [3] GLUCOSE FORECASTING WITH RANDOM GRAMMATICAL EVOLUTION
    Hidalgo, I.
    Velasco, J. M.
    Botella-Serrano, M.
    Garnica, O.
    Cervigon, C.
    Colmenar, J. M.
    Lanchares, J.
    [J]. DIABETES TECHNOLOGY & THERAPEUTICS, 2020, 22 : A77 - A78
  • [4] Glucose forecasting combining Markov chain based enrichment of data, random grammatical evolution and Bagging
    Ignacio Hidalgo, J.
    Botella, Marta
    Manuel Velasco, J.
    Garnica, Oscar
    Cervigon, Carlos
    Martinez, Remedios
    Aramendi, Aranzazu
    Maqueda, Esther
    Lanchares, Juan
    [J]. APPLIED SOFT COMPUTING, 2020, 88
  • [5] A Grammatical Evolution Approach for Estimating Blood Glucose Levels
    De Falco, I
    Scafuri, U.
    Tarantino, E.
    Della Cioppa, A.
    Koutny, Tomas
    Krcma, Michal
    [J]. 2020 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2020,
  • [6] Interpretable Solutions for Breast Cancer Diagnosis with Grammatical Evolution and Data Augmentation
    Hasan, Yumnah
    de Lima, Allan
    Amerehi, Fatemeh
    de Bulnes, Darian Reyes Fernandez
    Healy, Patrick
    Ryan, Conor
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2024, PT I, 2024, 14634 : 224 - 239
  • [7] Enhancing the Interpretability of Deep Models in Healthcare Through Attention: Application to Glucose Forecasting for Diabetic People
    De Bois, Maxime
    El Yacoubi, Mounim A.
    Ammi, Mehdi
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (12)
  • [8] Enhancing Medical Imaging Through Data Augmentation: A Review
    Teixeira, Beatriz
    Pinto, Goncalo
    Filipe, Vitor
    Teixeira, Ana
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS-ICCSA 2024 WORKSHOPS, PT II, 2024, 14816 : 341 - 354
  • [9] Forecasting Glucose Levels in Patients with Diabetes Mellitus using Semantic Grammatical Evolution and Symbolic Aggregate Approximation
    Manuel Velasco, Jose
    Garnica, Oscar
    Contador, Sergio
    Botella, Marta
    Lanchares, Juan
    Ignacio Hidalgo, J.
    [J]. PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 1387 - 1394
  • [10] Personalized blood glucose prediction: A hybrid approach using grammatical evolution and physiological models
    Contreras, Ivan
    Oviedo, Silvia
    Vettoretti, Martina
    Visentin, Roberto
    Vehi, Josep
    [J]. PLOS ONE, 2017, 12 (11):