Optimally stable multivariate bases

被引:33
|
作者
Lyche, T
Peña, JM
机构
[1] Univ Oslo, Dept Informat, N-0316 Oslo, Norway
[2] Univ Zaragoza, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
关键词
optimal stability; condition number; tensor product B-spline basis; triangular Bernstein basis;
D O I
10.1023/A:1025863309959
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the tensor product B-spline basis and the triangular Bernstein basis are in some sense best conditioned among all nonnegative bases for the spaces of tensor product splines and multivariate polynomials, respectively. We also introduce some new condition numbers which are analogs of component-wise condition numbers for linear systems introduced by Skeel.
引用
收藏
页码:149 / 159
页数:11
相关论文
共 50 条
  • [1] Optimally Stable Multivariate Bases
    T. Lyche
    J.M. Peña
    [J]. Advances in Computational Mathematics, 2004, 20 : 149 - 159
  • [2] Stable local bases for multivariate spline spaces
    Davydov, O
    [J]. JOURNAL OF APPROXIMATION THEORY, 2001, 111 (02) : 267 - 297
  • [3] Optimally weighted local discriminant bases
    Hazaveh, K
    Raahemifar, K
    [J]. PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL IV: DIGITAL SIGNAL PROCESSING-COMPUTER AIDED NETWORK DESIGN-ADVANCED TECHNOLOGY, 2003, : 329 - 332
  • [4] OPTIMALLY STABLE CORRECTOR METHODS
    THOMPSON, S
    [J]. SIAM REVIEW, 1976, 18 (04) : 830 - 830
  • [5] On Multivariate Wilson Bases
    Bownik, Marcin
    Jakobsen, Mads S.
    Lemvig, Jakob
    Okoudjou, Kasso A.
    [J]. 2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 192 - 195
  • [6] Placing Green Bridges Optimally, with a Multivariate Analysis
    Fluschnik, Till
    Kellerhals, Leon
    [J]. CONNECTING WITH COMPUTABILITY, 2021, 12813 : 204 - 216
  • [7] Placing Green Bridges Optimally, with a Multivariate Analysis
    Fluschnik, Till
    Kellerhals, Leon
    [J]. THEORY OF COMPUTING SYSTEMS, 2024, 68 (05) : 1312 - 1338
  • [8] OPTIMALLY STABLE LAGRANGIAN NUMERICAL DIFFERENTIATION
    RIVLIN, TJ
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (05) : 712 - 725
  • [9] Module bases for multivariate splines
    Rose, LL
    [J]. JOURNAL OF APPROXIMATION THEORY, 1996, 86 (01) : 13 - 20
  • [10] SOME PROBLEMS IN OPTIMALLY STABLE NUMERICAL DIFFERENTIATION
    SALZER, HE
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A373 - A373