Quasi-steady state reduction for compartmental systems

被引:2
|
作者
Goeke, Alexandra [1 ]
Lax, Christian [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math, D-52056 Aachen, Germany
关键词
Singular perturbations; Reduction; Reaction-diffusion equations; REACTION-DIFFUSION SYSTEM; APPROXIMATION; DYNAMICS; KINETICS; MASS; MANIFOLDS; EXISTENCE; THEOREM; LIMIT;
D O I
10.1016/j.physd.2016.04.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a method to determine an asymptotic reduction (in the sense of Tikhonov and Fenichel) for singularly perturbed compartmental systems in the presence of slow transport. It turns out that the reduction can be derived from the individual interaction terms alone. We apply the result to spatially discretized reaction-diffusion systems and obtain (based on the reduced discretized systems) a heuristic to reduce-reaction-diffusion systems in presence of slow diffusion. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Quasi-steady state assumption vs. delayed quasi-steady state assumption: Model reduction tools for biochemical processes
    Papacek, Stepan
    Lynnyk, Volodymyr
    [J]. PROCESS CONTROL '21 - PROCEEDING OF THE 2021 23RD INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC), 2021, : 278 - 283
  • [2] Quasi-Steady State Cosmology
    Vishwakarma, Ram Gopal
    [J]. 2ND CRISIS IN COSMOLOGY CONFERENCE, CCC-2, 2009, 413 : 164 - 168
  • [3] The quasi-steady state cosmology
    Hoyle, F
    Burbidge, G
    Narlikar, JV
    [J]. EXAMINING THE BIG BANG AND DIFFUSE BACKGROUND RADIATIONS, 1996, (168): : 329 - 368
  • [4] Classical quasi-steady state reduction-A mathematical characterization
    Goeke, Alexandra
    Walcher, Sebastian
    Zerz, Eva
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2017, 345 : 11 - 26
  • [6] Quasi-steady state reduction for the Michaelis–Menten reaction–diffusion system
    Martin Frank
    Christian Lax
    Sebastian Walcher
    Olaf Wittich
    [J]. Journal of Mathematical Chemistry, 2018, 56 : 1759 - 1781
  • [7] Computing quasi-steady state reductions
    Alexandra Goeke
    Christian Schilli
    Sebastian Walcher
    Eva Zerz
    [J]. Journal of Mathematical Chemistry, 2012, 50 : 1495 - 1513
  • [8] Computing quasi-steady state reductions
    Goeke, Alexandra
    Schilli, Christian
    Walcher, Sebastian
    Zerz, Eva
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 50 (06) : 1495 - 1513
  • [9] Quasi-steady state: a real behaviour?
    Zhang, HM
    Garga, VK
    [J]. CANADIAN GEOTECHNICAL JOURNAL, 1997, 34 (05) : 749 - 761
  • [10] INTERLEVEL ELECTRON TRANSFER - STEADY AND QUASI-STEADY STATE
    TORRENS, AB
    [J]. INTERNATIONAL JOURNAL OF ELECTRONICS, 1969, 27 (02) : 139 - +