Big Bang Bifurcation Analysis and Allee Effect in Generic Growth Functions

被引:5
|
作者
Leonel Rocha, J. [1 ]
Taha, Abdel-Kaddous [2 ]
Fournier-Prunaret, D. [3 ]
机构
[1] Inst Politecn Lisboa, ISEL Inst Super Engn Lisboa, ADM, Rua Conselheiro Emidio Navarro 1, P-1959007 Lisbon, Portugal
[2] Univ Toulouse, INSA, 135 Ave Rangueil, F-31077 Toulouse, France
[3] Univ Toulouse, INSA, LAAS CNRS, 7 Ave Colonel Roche, F-31077 Toulouse, France
来源
关键词
Generic growth functions; population dynamics; Allee effect; big bang bifurcations; fold and flip bifurcations; DYNAMICS; MODEL;
D O I
10.1142/S021812741650108X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this work is to study the dynamics and bifurcation properties of generic growth functions, which are defined by the population size functions of the generic growth equation. This family of unimodal maps naturally incorporates a principal focus of ecological and biological research: the Allee effect. The analysis of this kind of extinction phenomenon allows to identify a class of Allee's functions and characterize the corresponding Allee's effect region and Allee's bifurcation curve. The bifurcation analysis is founded on the performance of fold and flip bifurcations. The dynamical behavior is rich with abundant complex bifurcation structures, the big bang bifurcations of the so-called "box-within-a-box" fractal type being the most outstanding. Moreover, these bifurcation cascades converge to different big bang bifurcation curves with distinct kinds of boxes, where for the corresponding parameter values several attractors are associated. To the best of our knowledge, these results represent an original contribution to clarify the big bang bifurcation analysis of continuous 1D maps.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Von Bertalanffy's dynamics under a polynomial correction: Allee effect and big bang bifurcation
    Leonel Rocha, J.
    Taha, A. K.
    Fournier-Prunaret, D.
    [J]. NOMA15 INTERNATIONAL WORKSHOP ON NONLINEAR MAPS AND APPLICATIONS, 2016, 692
  • [2] Big bang bifurcations and Allee effect in Blumberg's dynamics
    Rocha, J. Leonel
    Fournier-Prunaret, Daniele
    Taha, Abdel-Kaddous
    [J]. NONLINEAR DYNAMICS, 2014, 77 (04) : 1749 - 1771
  • [3] Big bang bifurcations and Allee effect in Blumberg’s dynamics
    J. Leonel Rocha
    Danièle Fournier-Prunaret
    Abdel-Kaddous Taha
    [J]. Nonlinear Dynamics, 2014, 77 : 1749 - 1771
  • [4] The generic solution with isotropic Big Bang
    Belinski, V. A.
    [J]. ASTRONOMY REPORTS, 2015, 59 (06) : 425 - 429
  • [5] The generic solution with isotropic Big Bang
    V. A. Belinski
    [J]. Astronomy Reports, 2015, 59 : 425 - 429
  • [6] EXPLOSION BIRTH AND EXTINCTION: DOUBLE BIG BANG BIFURCATIONS AND ALLEE EFFECT IN TSOULARIS-WALLACE'S GROWTH MODELS
    Leonel Rocha, J.
    Taha, Abdel-Kaddous
    Fournier-Prunaret, Daniele
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (09): : 3131 - 3163
  • [7] Stability and bifurcation analysis of an amensalism system with Allee effect
    Ming Zhao
    Yunfei Du
    [J]. Advances in Difference Equations, 2020
  • [8] Stability and Bifurcation Analysis of a Commensal Model with Additive Allee Effect and Nonlinear Growth Rate
    Wei, Zhen
    Xia, Yonghui
    Zhang, Tonghua
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (13):
  • [9] Stability and bifurcation analysis of an amensalism system with Allee effect
    Zhao, Ming
    Du, Yunfei
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [10] Bifurcation analysis of the predator–prey model with the Allee effect in the predator
    Deeptajyoti Sen
    Saktipada Ghorai
    Malay Banerjee
    Andrew Morozov
    [J]. Journal of Mathematical Biology, 2022, 84