BPS Wilson loop in N=2 superconformal SU(N) "orientifold" gauge theory and weak-strong coupling interpolation

被引:0
|
作者
Beccaria, M. [1 ,2 ]
Dunne, G., V [3 ]
Tseytlin, A. A. [4 ,5 ,6 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis Ennio De Giorgi, Via Arnesano, I-73100 Lecce, Italy
[2] Ist Nazl Fis Nucl, Sez Lecce, Via Arnesano, I-73100 Lecce, Italy
[3] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
[4] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
[5] MSU, Inst Theoret & Math Phys, Moscow, Russia
[6] Lebedev Inst, Moscow, Russia
来源
关键词
AdS-CFT Correspondence; 1; N Expansion; Extended Supersymmetry; ZEROS;
D O I
10.1007/JHEP07(2021)085
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider the expectation value < W > of the circular BPS Wilson loop in N = 2 superconformal SU(N) gauge theory containing a vector multiplet coupled to two hypermultiplets in rank-2 symmetric and antisymmetric representations. This theory admits a regular large N expansion, is planar-equivalent to N = 4 SYM theory and is expected to be dual to a certain orbifold/orientifold projection of AdS(5) x S-5 superstring theory. On the string theory side < W > is represented by the path integral expanded near the same AdS(2) minimal surface as in the maximally supersymmetric case. Following the string theory argument in [5], we suggest that as in the N = 4 SYM case and in the N = 2 SU(N) x SU(N) superconformal quiver theory discussed in [19], the coefficient of the leading non-planar 1/N-2 correction in < W > should have the universal lambda(3/2) scaling at large 't Hooft coupling. We confirm this prediction by starting with the localization matrix model representation for < W >. We complement the analytic derivation of the lambda(3/2) scaling by a numerical high-precision resummation and extrapolation of the weak-coupling expansion using conformal mapping improved Pade analysis.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] BPS Wilson loop in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 superconformal SU(N) “orientifold” gauge theory and weak-strong coupling interpolation
    M. Beccaria
    G. V. Dunne
    A. A. Tseytlin
    Journal of High Energy Physics, 2021 (7)
  • [2] Strong coupling expansion of free energy and BPS Wilson loop in N=2 superconformal models with fundamental hypermultiplets
    Beccaria, M.
    Dunne, G., V
    Tseytlin, A. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, (08):
  • [3] Exact results in a N=2 superconformal gauge theory at strong coupling
    Beccaria, M.
    Billo, M.
    Frau, M.
    Lerda, A.
    Pini, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, (07):
  • [4] On the weak coupling spectrum of N=2 supersymmetric SU(n) gauge theory
    Fraser, C
    Hollowood, TJ
    NUCLEAR PHYSICS B, 1997, 490 (1-2) : 217 - 235
  • [5] 1/N expansion of circular Wilson loop in N=2 superconformal SU(N) x SU(N) quiver
    Beccaria, M.
    Tseytlin, A. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, (04):
  • [6] Wilson loop correlators at strong coupling in N=2 quiver gauge theories
    Pini, Alessandro
    Vallarino, Paolo
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, (11):
  • [7] 1/2 BPS Wilson loop in N=6 superconformal Chern-Simons theory at two loops
    Bianchi, Marco S.
    Giribet, Gaston
    Leoni, Matias
    Penati, Silvia
    PHYSICAL REVIEW D, 2013, 88 (02):
  • [8] Exact strong coupling results in N=2 Sp(2N) superconformal gauge theory from localization
    Beccaria, M.
    Korchemsky, G. P.
    Tseytlin, A. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, (01):
  • [9] Strong to weak coupling transitions of SU(N) gauge theories in 2+1 dimensions
    Bursa, Francis
    Teper, Michael
    PHYSICAL REVIEW D, 2006, 74 (12):
  • [10] Integrated correlators with a Wilson line in a N=2 quiver gauge theory at strong coupling
    Pini, Alessandro
    JOURNAL OF HIGH ENERGY PHYSICS, 2025, (01):