Near optimal finite time identification of arbitrary linear dynamical systems

被引:0
|
作者
Sarkar, Tuhin [1 ]
Rakhlin, Alexander [2 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We derive finite time error bounds for estimating general linear time-invariant (LTI) systems from a single observed trajectory using the method of least squares. We provide the first analysis of the general case when eigenvalues of the LTI system are arbitrarily distributed in three regimes: stable, marginally stable, and explosive. Our analysis yields sharp upper bounds for each of these cases separately. We observe that although the underlying process behaves quite differently in each of these three regimes, the systematic analysis of a self-normalized martingale difference term helps bound identification error up to logarithmic factors of the lower bound. On the other hand, we demonstrate that the least squares solution may be statistically inconsistent under certain conditions even when the signal-to-noise ratio is high.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Finite-Time Identification of Linear Systems: Fundamental Limits and Optimal Algorithms
    Jedra, Yassir
    Proutiere, Alexandre
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (05) : 2805 - 2820
  • [2] Finite time identification in unstable linear systems
    Faradonbeh, Mohamad Kazem Shirani
    Tewari, Ambuj
    Michailidis, George
    [J]. AUTOMATICA, 2018, 96 : 342 - 353
  • [3] Linear finite dynamical systems
    Toledo, RAH
    [J]. COMMUNICATIONS IN ALGEBRA, 2005, 33 (09) : 2977 - 2989
  • [4] Finite-Time Stabilization of Impulsive Dynamical Linear Systems
    Amato, F.
    Ambrosino, R.
    Ariola, M.
    Cosentino, C.
    De Tommasi, G.
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 2782 - 2787
  • [5] Finite-time stabilization of impulsive dynamical linear systems
    Amato, F.
    Ambrosino, R.
    Cosentino, C.
    De Tommasi, G.
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2011, 5 (01) : 89 - 101
  • [6] Finite Time Stability and Optimal Finite Time Stabilization for Discrete-Time Stochastic Dynamical Systems
    Lee, Junsoo
    Haddad, Wassim M. M.
    Lanchares, Manuel
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (07) : 3978 - 3991
  • [7] Optimal Finite Time Control for Discrete-Time Stochastic Dynamical Systems
    Lee, Junsoo
    Haddad, Wassim M.
    Lanchares, Manuel
    [J]. 2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3500 - 3505
  • [8] OPTIMAL NONPARAMETRIC IDENTIFICATION FROM ARBITRARY CORRUPT FINITE-TIME SERIES
    CHEN, J
    NETT, CN
    FAN, MKH
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (04) : 769 - 776
  • [9] Finite-horizon near optimal adaptive control of uncertain linear discrete-time systems
    Zhao, Qiming
    Xu, Hao
    Sarangapani, Jagannathan
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2015, 36 (06): : 853 - 872
  • [10] Robust Finite-Time Parameter Estimation for Linear Dynamical Systems
    Johnson, Ryan S.
    Saoud, Adnane
    Sanfelice, Ricardo G.
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4654 - 4659