共 50 条
Exterior Powers of Lubin-Tate Groups
被引:6
|作者:
Hedayatzadeh, S. Mohammad Hadi
[1
]
机构:
[1] CALTECH, Dept Math, Mail Code 253-37, Pasadena, CA 91125 USA
来源:
关键词:
MODULES;
D O I:
10.5802/jtnb.895
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let O be the ring of integers of a non-Archimedean local field of characteristic zero and pi a fixed uniformizer of O. We prove that the exterior powers of a pi-divisible module of dimension at most 1 over a locally Noetherian scheme exist and commute with arbitrary base change. We calculate the height and dimension of the exterior powers in terms of the height of the given pi-divisible module. In the case of p-divisible groups, the existence of the exterior powers are proved without any condition on the basis.
引用
收藏
页码:77 / 148
页数:72
相关论文