Visualizing multifractal scaling behavior: A simple coloring heuristic

被引:0
|
作者
Gilbert, AC [1 ]
Willinger, W [1 ]
Feldmann, A [1 ]
机构
[1] AT&T Labs Res, Florham Park, NJ 07932 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The self-similar or monofractal scaling behavior of a signal can be readily visualized in the time domain by plotting and comparing the signal at many different levels of resolution (i.e., time scales). No comparable visualization techniques appear to be available for qualitatively assessing the presence of multifractal scaling in a given signal. To help in developing an intuitive understanding of multifractals, we propose in this paper a simple coloring heuristic that gives rise to an effective, time domain-based visualization technique for multifractals. Our approach combines wavelet-based statistical denoising techniques with wavelet characterizations of local regularity for functions. We illustrate our heuristic with a number of examples, including the binomial measure, a simple and well-studied multifractal, and measured traces of actual data network traffic.
引用
收藏
页码:715 / 722
页数:8
相关论文
共 50 条
  • [1] Multifractal scaling behavior analysis for existing dams
    Su, Huaizhi
    Wen, Zhiping
    Wang, Feng
    Wei, Bowen
    Hu, Jiang
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (12) : 4922 - 4933
  • [2] A SIMPLE AND FAST HEURISTIC ALGORITHM FOR EDGE-COLORING OF GRAPHS
    Fiol, M. A.
    Vilaltella, J.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2013, 10 (03) : 263 - 272
  • [3] Multifractal formalism by enforcing the universal behavior of scaling functions
    Mukli, Peter
    Nagy, Zoltan
    Eke, Andras
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 417 : 150 - 167
  • [4] SCALING BEHAVIOR OF FINITE BROWNIAN-MOTION - A MULTIFRACTAL APPROACH
    QUINTELA, MAL
    TOJO, C
    [J]. ANALES DE QUIMICA, 1993, 89 (03): : 297 - 305
  • [5] MULTIFRACTAL BEHAVIOR AND SCALING IN DISORDERED MESOSCOPIC QHE-SYSTEMS
    HUCKESTEIN, B
    SCHWEITZER, L
    [J]. PHYSICA A, 1992, 191 (1-4): : 406 - 409
  • [6] SCALING BEHAVIOR OF MULTIFRACTAL-MOMENT DISTRIBUTIONS NEAR CRITICALITY
    ALBINET, G
    TREMBLAY, RR
    TREMBLAY, AMS
    [J]. JOURNAL DE PHYSIQUE I, 1993, 3 (02): : 323 - 330
  • [7] A Heuristic for the Coloring of Planar Graphs
    De Ita Luna, Guillermo
    Lopez-Ramirez, Cristina
    De Ita-Varela, Ana E.
    Gutierrez-Gomez, Jorge E.
    [J]. ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2020, 354 : 91 - 105
  • [8] CONSISTENT SCALING OF MULTIFRACTAL MEASURES - MULTIFRACTAL SPATIAL CORRELATIONS
    PLATT, DE
    FAMILY, F
    [J]. PHYSICAL REVIEW E, 1993, 47 (04): : 2281 - 2288
  • [9] Multifractal scaling of the intrinsic permeability
    Boufadel, MC
    Lu, SL
    Molz, FJ
    Lavallee, D
    [J]. WATER RESOURCES RESEARCH, 2000, 36 (11) : 3211 - 3222
  • [10] Multifractal scaling in Sinai diffusion
    Murthy, KPN
    Giacometti, A
    Kehr, KW
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1996, 224 (1-2) : 232 - 238