Markov chain Monte Carlo without likelihoods

被引:729
|
作者
Marjoram, P
Molitor, J
Plagnol, V
Tavaré, S
机构
[1] Univ So Calif, Dept Biol Sci, Program Mol & Computat Biol, Los Angeles, CA 90089 USA
[2] Univ So Calif, Div Biostat, Dept Prevent Med, Keck Sch Med, Los Angeles, CA 90089 USA
关键词
D O I
10.1073/pnas.0306899100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many stochastic simulation approaches for generating observations from a posterior distribution depend on knowing a likelihood function. However, for many complex probability models, such likelihoods are either impossible or computationally prohibitive to obtain. Here we present a Markov chain Monte Carlo method for generating observations from a posterior distribution without the use of likelihoods. it can also be used in frequentist applications, in particular for maximum-likelihood estimation. The approach is illustrated by an example of ancestral inference in population genetics. A number of open problems are highlighted in the discussion.
引用
收藏
页码:15324 / 15328
页数:5
相关论文
共 50 条
  • [1] Sequential Monte Carlo without likelihoods
    Sisson, S. A.
    Fan, Y.
    Tanaka, Mark M.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (06) : 1760 - 1765
  • [2] Markov chain Monte Carlo methods for the calculation of likelihoods in genetic linkage studies.
    George, AW
    Bogdan, M
    Wijsman, EM
    Thompson, EA
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2001, 69 (04) : 411 - 411
  • [3] Markov Chain Monte Carlo Method without Detailed Balance
    Suwa, Hidemaro
    Todo, Synge
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (12)
  • [4] Regression without truth with Markov chain Monte-Carlo
    Madan, Hennadii
    Pernus, Franjo
    Likar, Bostjan
    Spiclin, Ziga
    [J]. MEDICAL IMAGING 2017: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2017, 10136
  • [5] Markov Chain Monte Carlo
    Henry, Ronnie
    [J]. EMERGING INFECTIOUS DISEASES, 2019, 25 (12) : 2298 - 2298
  • [6] Caching and interpolated likelihoods: accelerating cosmological Monte Carlo Markov chains
    Bouland, Adam
    Easther, Richard
    Rosenfeld, Katherine
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2011, (05):
  • [7] Population Markov Chain Monte Carlo
    Laskey, KB
    Myers, JW
    [J]. MACHINE LEARNING, 2003, 50 (1-2) : 175 - 196
  • [8] Population Markov Chain Monte Carlo
    Kathryn Blackmond Laskey
    James W. Myers
    [J]. Machine Learning, 2003, 50 : 175 - 196
  • [9] Monte Carlo integration with Markov chain
    Tan, Zhiqiang
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (07) : 1967 - 1980
  • [10] On nonlinear Markov chain Monte Carlo
    Andrieu, Christophe
    Jasra, Ajay
    Doucet, Arnaud
    Del Moral, Pierre
    [J]. BERNOULLI, 2011, 17 (03) : 987 - 1014