Optimization of welding process with neural networks

被引:0
|
作者
Hascoet, JY
Legoff, O
机构
[1] Ecole Cent Nantes, Unite Mixte CNRS UMR6597, Inst Rech Cybernet Nantes, F-44321 Nantes, France
[2] Ecole Normale Super, LURPA, F-94235 Cachan, France
来源
MECANIQUE INDUSTRIELLE ET MATERIAUX | 1998年 / 51卷 / 03期
关键词
CAD; concurrent engineering; feature extraction; neural networks; welding; optimization;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Within the context of integrated design, we propose a new approach for off-line programming of welding robots by interfacing a CAD modeler (geometric database) and an artificial intelligence system (welding database). The CAD system, used to design pieces to be assembled allows us to automatically generate welding trajectories and extract the assembly features needed to determine welding parameters. Using these features, we propose a new approach to generate automatically welding parameters, in GMAW process, with neural networks. We have chosen to use backpropagation neural networks because this;approach integrates database and modeling aspects. Moreover a neural nets based system is easily improvable, if can enlarge his field of application using new experimental welding data. The proposed method is able to determine the welding process and the welding wire to use and then to compute the welding parameters. We present In this paper the system we have developed with neural networks, the results we obtain and the possibilities of the method.
引用
收藏
页码:121 / 126
页数:6
相关论文
共 50 条
  • [1] Neural networks for process optimization
    Mühlhaus, R
    Görner, K
    Pollack, M
    Moll, W
    Pflipsen, K
    [J]. ENTWICKLUNGSLINIEN IN DER ENERGIE - UND KRAFTWERKSTECHNIK, 1999, 1495 : 493 - 501
  • [2] Neural networks optimisation of laser welding process
    Caiazzo, F
    Daurelio, G
    Ludovico, AD
    Minutolo, FMC
    Sergi, V
    [J]. XIII INTERNATIONAL SYMPOSIUM ON GAS FLOW AND CHEMICAL LASERS AND HIGH-POWER LASER CONFERENCE, 2000, 4184 : 611 - 614
  • [3] Tuning of neural networks using particle swarm optimization to model MIG welding process
    Malviya, Rakesh
    Pratihar, Dilip Kumar
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2011, 1 (04) : 223 - 235
  • [4] WELDING PROCESS OPTIMIZATION WITH ARTIFICIAL NEURAL NETWORK APPLICATIONS
    Aktepe, Adnan
    Ersoz, Suleyman
    Luy, Murat
    [J]. NEURAL NETWORK WORLD, 2014, 24 (06) : 655 - 670
  • [5] Artificial neural networks applied to spot welding process modeling
    张忠典
    李严
    何幸平
    吴林
    徐清
    [J]. China Welding, 1997, (01) : 44 - 51
  • [6] Artificial neural networks applied to spot welding process modeling
    Zhang, Zhongdian
    Li, Yan
    He, Xingping
    Wu, Lin
    Xu, Qing
    [J]. China Welding (English Edition), 1997, 6 (01): : 41 - 48
  • [7] Optimization of underwater wet welding process parameters using neural network
    Omajene J.E.
    Martikainen J.
    Wu H.
    Kah P.
    [J]. International Journal of Mechanical and Materials Engineering, 2014, 9 (1)
  • [8] Process Monitoring in Friction Stir Welding Using Convolutional Neural Networks
    Hartl, Roman
    Bachmann, Andreas
    Habedank, Jan Bernd
    Semm, Thomas
    Zaeh, Michael E.
    [J]. METALS, 2021, 11 (04)
  • [9] Modeling and optimization of semiconductor manufacturing process with neural networks
    Wang, SJ
    Chen, YM
    Wang, XD
    Li, ZZ
    Shi, LC
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2000, 9 (01) : 1 - 5
  • [10] CRYSTALLIZATION PROCESS OPTIMIZATION USING ARTIFICIAL NEURAL NETWORKS
    WOINAROSCHY, A
    ISOPESCU, R
    FILIPESCU, L
    [J]. CHEMICAL ENGINEERING & TECHNOLOGY, 1994, 17 (04) : 269 - 272