Causal Discovery Toolbox: Uncovering causal relationships in Python']Python

被引:0
|
作者
Kalainathan, Diviyan [1 ]
Goudet, Olivier [2 ]
Dutta, Ritik [3 ]
机构
[1] Univ Paris Sud, Fen Tech, TAU, LRI,INRIA, F-75013 Paris, France
[2] Univ Angers, LERIA, 2 Blvd Lavoisier, F-49045 Angers, France
[3] IIT Gandhinagar, Gandhinagar 382355, Gujarat, India
关键词
Causal Discovery; Graph recovery; open source; constraint-based methods; score-based methods; pairwise causality; Markov blanket;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new open source Python framework for causal discovery from observational data and domain background knowledge, aimed at causal graph and causal mechanism modeling. The CDT package implements an end-to-end approach, recovering the direct dependencies (the skeleton of the causal graph) and the causal relationships between variables. It includes algorithms from the 'BNLEARN' (Scutari, 2018) and 'PCALG' (Kalisch et al., 2018) packages, together with algorithms for pairwise causal discovery such as ANM (Hover et al., 2009). CDT is available under the MIT License at https://github.com/FenTechSolutions/CausalDiscoveryToolbox.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Causal discovery toolbox: Uncovering causal relationships in python
    Kalainathan, Diviyan
    Goudet, Olivier
    Dutta, Ritik
    [J]. Journal of Machine Learning Research, 2020, 21
  • [2] Causal ML: Python']Python package for causal inference machine learning
    Zhao, Yang
    Liu, Qing
    [J]. SOFTWAREX, 2023, 21
  • [3] BCI Toolbox: An open-source python']python package for the Bayesian causal inference model
    Zhu, Haocheng
    Beierholm, Ulrik
    Shams, Ladan
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (07)
  • [4] MeDIL: A Python']Python Package for Causal Modelling
    Markham, Alex
    Chivukula, Aditya
    Grosse-Wentrup, Moritz
    [J]. INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 621 - 624
  • [5] CausalBO: A Python']Python Package for Causal Bayesian Optimization
    Roberts, Jeremy
    Javidian, Mohammad Ali
    [J]. SOUTHEASTCON 2024, 2024, : 1370 - 1375
  • [6] Inflation: a Python']Python library for classical and quantum causal compatibility
    Boghiu, Emanuel-Cristian
    Wolfe, Elie
    Pozas-Kerstjens, Alejandro
    [J]. QUANTUM, 2023, 7
  • [7] Py-holmes: Causal Testing for Deep Neural Networks in Python']Python
    McQueary, Wren
    Mim, Sadia Afrin
    Raihan, Md Nishat
    Smith, Justin
    Johnson, Brittany
    [J]. COMPANION PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, FSE COMPANION 2024, 2024, : 602 - 606
  • [8] MTpy: A Python']Python toolbox for magnetotellurics
    Krieger, Lars
    Peacock, Jared R.
    [J]. COMPUTERS & GEOSCIENCES, 2014, 72 : 167 - 175
  • [9] ObsPy: A Python']Python Toolbox for Seismology
    Beyreuther, Moritz
    Barsch, Robert
    Krischer, Lion
    Megies, Tobias
    Behr, Yannik
    Wassermann, Joachim
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2010, 81 (03) : 530 - 533
  • [10] Pyo, the Python']Python DSP toolbox
    Belanger, Olivier
    [J]. MM'16: PROCEEDINGS OF THE 2016 ACM MULTIMEDIA CONFERENCE, 2016, : 1214 - 1217