Space-Filling Curves for Real-Space Electronic Structure Calculations

被引:13
|
作者
Liou, Kai-Hsin [1 ]
Biller, Ariel [2 ]
Kronik, Leeor [2 ]
Chelikowsky, James R. [1 ]
机构
[1] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
[2] Weizmann Inst Sci, Dept Mol Chem & Mat Sci, IL-76100 Rehovot, Israel
基金
以色列科学基金会;
关键词
FINITE-DIFFERENCE FORMULATION; PARALLEL IMPLEMENTATION; SPARC ACCURATE;
D O I
10.1021/acs.jctc.1c00237
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hamiltonian matrices for Kohn-Sham calculations implemented in real space are often large (millions by millions) but very sparse. This poses challenges and opportunities for iterative eigensolvers, which often require a large number of matrix-vector multiplications. As a consequence, an efficient parallel sparse matrix-vector multiplication algorithm is desired. Here, we investigate the benefits of using Hilbert space-filling curves (SFCs) in domain partitioning. We show that the use of Hilbert SFCs in grid-point partitioning brings better locality of the grid points, improves balance of communication, and reduces communication overhead. We also demonstrate an extension of Hilbert SFCs coupled with blockwise operations. The use of blockwise operations helps exploit the vector-processing units in contemporary computational platforms. We illustrate speedup and scalability improvements for an iterative eigensolver based on the Chebyshev-filtered subspace iteration method. Using blockwise Hilbert SFCs, we solve the Kohn-Sham problem for silicon nanocrystals up to 10 nm in diameter, which contain over 26,000 atoms. We illustrate how the density of states of silicon nanocrystals evolves to the bulk limit, where Van Hove singularities are clearly apparent.
引用
收藏
页码:4039 / 4048
页数:10
相关论文
共 50 条
  • [1] A note on space-filling visualizations and space-filling curves
    Wattenberg, M
    [J]. INFOVIS 05: IEEE Symposium on Information Visualization, Proceedings, 2005, : 181 - 186
  • [2] Space-Filling Curves
    Holbrook, John
    [J]. MATHEMATICAL INTELLIGENCER, 1997, 19 (01): : 69 - 71
  • [3] Space-filling curves
    R. C. Mittal
    [J]. Resonance, 2000, 5 (12) : 26 - 33
  • [4] REAL-SPACE APPROACH TO ELECTRONIC-STRUCTURE CALCULATIONS
    TSUCHIDA, E
    TSUKADA, M
    [J]. SOLID STATE COMMUNICATIONS, 1995, 94 (01) : 5 - 8
  • [5] Spectral differences in real-space electronic structure calculations
    Jordan, DK
    Mazziotti, DA
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (02): : 574 - 578
  • [6] Computing Space-Filling Curves
    Couch, P. J.
    Daniel, B. D.
    McNicholl, Timothy H.
    [J]. THEORY OF COMPUTING SYSTEMS, 2012, 50 (02) : 370 - 386
  • [7] Computing Space-Filling Curves
    P. J. Couch
    B. D. Daniel
    Timothy H. McNicholl
    [J]. Theory of Computing Systems, 2012, 50 : 370 - 386
  • [8] Neural Space-Filling Curves
    Wang, Hanyu
    Gupta, Kamal
    Davis, Larry
    Shrivastava, Abhinav
    [J]. COMPUTER VISION, ECCV 2022, PT VII, 2022, 13667 : 418 - 434
  • [9] Smoothed Particle Method for Real-Space Electronic Structure Calculations
    Sugimoto, Soichiro
    Zempo, Yasunari
    [J]. 25TH IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS (CCP2013), 2014, 510
  • [10] Three real-space discretization techniques in electronic structure calculations
    Torsti, T
    Eirola, T
    Enkovaara, J
    Hakala, T
    Havu, P
    Havu, V
    Höynälänmaa, T
    Ignatius, J
    Lyly, M
    Makkonen, I
    Rantala, TT
    Ruokolainen, J
    Ruotsalainen, K
    Räsänen, E
    Saarikoski, H
    Puska, MJ
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (05): : 1016 - 1053