On-line stability monitoring of BWR's using artificial neural networks

被引:0
|
作者
Tambouratzis, T [1 ]
Antonopoulos-Domis, M [1 ]
机构
[1] NCSR Demokritos, Inst Nucl Technol Radiat Protect, Athens 15310, Greece
关键词
D O I
暂无
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The problem of uncovering stability parameters of Boiling Water Reactors (BWRs) from short neutron noise records for on-line monitoring is investigated. The aim is to use the smallest possible number of points of the auto-correlation function (ACF) at the shortest possible time lags as input to a number of backpropagation artificial neural networks (BP ANNs), which are trained to approximate the relationship that exists between the ACF of the neutron noise signals and the stability parameters of interest (e.g. the decay ratio (DR)). Tests on novel ACFs illustrate the potential of the proposed approach for on-line stability monitoring. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1287 / 1302
页数:16
相关论文
共 50 条
  • [1] On-line power systems voltage stability monitoring using artificial neural networks
    University 'Politehnica' of Bucharest, Department of Electrical Power Systems, Romania
    [J]. Int. Symp. Adv. Top. Electr. Eng., ATEE, (622-625):
  • [2] On-line Power Systems Voltage Stability Monitoring using Artificial Neural Networks
    Bulac, Constantin
    Tristiu, Ion
    Mandis, Alexandru
    Toma, Lucian
    [J]. 2015 9TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE), 2015, : 622 - 625
  • [3] On-line voltage stability monitoring using artificial neural network
    Chakrabarti, S
    Jeyasurya, B
    [J]. 2004 LARGE ENGINEERING SYSTEMS CONFERENCE ON POWER ENGINEERING, CONFERENCE PROCEEDINGS: ENERGY FOR THE DAY AFTER TOMORROW, 2004, : 71 - 75
  • [4] On-line tool condition monitoring using artificial neural networks
    Javed, MA
    Hope, AD
    Littlefair, G
    Adradi, D
    Smith, GT
    Rao, BKN
    [J]. INSIGHT, 1996, 38 (05) : 351 - 354
  • [5] On-line tool condition monitoring using artificial neural networks
    Javed, M.A.
    Hope, A.D.
    Littlefair, G.
    Adradi, D.
    Smith, G.T.
    Rao, B.K.N.
    [J]. Insight: Non-Destructive Testing and Condition Monitoring, 1996, 38 (05): : 351 - 354
  • [6] On-line transient stability assessment using artificial neural networks
    Aboytes, F
    Ramirez, R
    [J]. CONTROL OF POWER PLANTS AND POWER SYSTEMS (SIPOWER'95), 1996, : 305 - 310
  • [7] Artificial neural networks for on-line voltage stability assessment
    Jeyasurya, B
    [J]. 2000 IEEE POWER ENGINEERING SOCIETY SUMMER MEETING, CONFERENCE PROCEEDINGS, VOLS 1-4, 2000, : 2014 - 2018
  • [8] Wide Area Transient Stability Prediction Using On-line Artificial Neural Networks
    Hashiesh, Fahd
    Mostafa, Hossam E.
    Mansour, Mohamed M.
    Khatib, Abdel-Rahman
    Helal, Ibrahim
    [J]. 2008 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE, 2008, : 100 - +
  • [9] On-line estimation of quantities using artificial neural networks
    Zilková, Jaroslava
    Timko, Jaroslav
    [J]. Acta Technica CSAV (Ceskoslovensk Akademie Ved), 2002, 47 (03): : 305 - 315
  • [10] On-Line Monitoring of PVC Foam Density Using Ultrasound Waves and Artificial Neural Networks
    N.H. Abu-Zahra
    S. Karimi
    [J]. The International Journal of Advanced Manufacturing Technology, 2002, 19 : 618 - 622