Eigenvalues of Congruence Covers of Geometrically Finite Hyperbolic Manifolds

被引:2
|
作者
Oh, Hee [1 ,2 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
[2] Korea Inst Adv Study, Seoul, South Korea
基金
美国国家科学基金会;
关键词
Eigenvalues; Geometrically finite hyperbolic manifolds; Spectral gap; MULTIPLICITIES; SUBGROUPS;
D O I
10.1007/s12220-014-9476-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = SO(n, 1). for n = 2 and Gamma a geometrically finite Zariski dense subgroup of G which is contained in an arithmetic subgroup of G. Denoting by Gamma(q) the principal congruence subgroup of Gamma of level q, and fixing a positive number lambda(0) strictly smaller than (n - 1)(2)/4, we show that, as q -> infinity along primes, the number of Laplacian eigenvalues of the congruence cover Gamma(q)\H-n smaller than lambda(0) is at most of order [Gamma : Gamma (q)](c) for some c = c(lambda(0)) > 0.
引用
收藏
页码:1421 / 1430
页数:10
相关论文
共 50 条