Saliency Cut in Stereo Images

被引:14
|
作者
Peng, Jianteng [1 ]
Shen, Jianbing [1 ]
Jia, Yunde [1 ]
Li, Xuelong [2 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China
[2] Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China
关键词
NORMALIZED CUTS;
D O I
10.1109/ICCVW.2013.10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel saliency-aware stereo images segmentation approach using the high-order energy items, which utilizes the disparity map and statistical information of stereo images to enrich the high-order potentials. To the best of our knowledge, our approach is first one to formulate the automatic stereo cut as the high-order energy optimization problems, which simultaneously segments the foreground objects in left and right images using the proposed high-order energy function. The relationships of stereo correspondence by disparity maps are further employed to enhance the connections between the left and right images. Experimental results demonstrate that the proposed approach can effectively improve the saliency-aware segmentation performance of stereo images.
引用
收藏
页码:22 / 28
页数:7
相关论文
共 50 条
  • [1] Automatic tag saliency ranking for stereo images
    Cao, Yang
    Kang, Kai
    Zhang, Shijie
    Zhang, Jing
    Wang, Zengfu
    [J]. NEUROCOMPUTING, 2016, 172 : 9 - 18
  • [2] Saliency Based Aesthetic Cut of Digital Images
    Greco, Luca
    La Cascia, Marco
    [J]. IMAGE ANALYSIS AND PROCESSING (ICIAP 2013), PT II, 2013, 8157 : 151 - 160
  • [3] Saliency maps operating on stereo images detect landmarks and their distance
    Conradt, J
    Simon, P
    Pescatore, M
    Verschure, PFMJ
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 795 - 800
  • [4] Quality assessment metric of stereo images considering cyclopean integration and visual saliency
    Yang, Jiachen
    Wang, Yafang
    Li, Baihua
    Lu, Wen
    Meng, Qinggang
    Lv, Zhihan
    Zhao, Dezong
    Gao, Zhiqun
    [J]. INFORMATION SCIENCES, 2016, 373 : 251 - 268
  • [5] Quality Assessment of Stereo Images using Reduced Reference Based on Saliency Region
    Boaz, Too Kipyego
    Prabhakar, C. J.
    [J]. 2014 INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), 2014, : 503 - 508
  • [6] LEARNING TO DETECT STEREO SALIENCY
    Guo, Fang
    Shen, Jianbing
    Li, Xuelong
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2014,
  • [7] Stereoscopic visual saliency prediction based on stereo contrast and stereo focus
    Hao Cheng
    Jian Zhang
    Qiang Wu
    Ping An
    Zhi Liu
    [J]. EURASIP Journal on Image and Video Processing, 2017
  • [8] Stereoscopic visual saliency prediction based on stereo contrast and stereo focus
    Cheng, Hao
    Zhang, Jian
    Wu, Qiang
    An, Ping
    Liu, Zhi
    [J]. EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2017,
  • [9] Saliency in Spectral Images
    Le Moan, Steven
    Mansouri, Alamin
    Hardeberg, Jon
    Voisin, Yvon
    [J]. IMAGE ANALYSIS: 17TH SCANDINAVIAN CONFERENCE, SCIA 2011, 2011, 6688 : 114 - 123
  • [10] STEREO IMAGES
    CHURCHYARD, PJ
    [J]. WIRELESS WORLD, 1976, 82 (1491): : 53 - 53