On the bounded partition dimension of some classes of convex polytopes

被引:10
|
作者
Azeem, Muhammad [1 ,2 ]
Nadeem, Muhammad Faisal [2 ]
Khalil, Adnan [2 ]
Ahmad, Ali [3 ]
机构
[1] Univ Putra Malaysia, Fac Engn, Dept Aerosp Engn, Seri Kembangan 43400, Malaysia
[2] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
[3] Jazan Univ, Coll Comp Sci & Informat Technol, Jazan 45142, Saudi Arabia
关键词
Convex polytopes graph; Resolving partition set; Bounded partition dimension; METRIC DIMENSION; FAMILIES; GRAPHS;
D O I
10.1080/09720529.2021.1880692
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a connected graph with V(G) and E(G) be the vertex set and edge set. For a vertex u is an element of V(G) and a subset W subset of V(G), the distance between u and W is d(u,W) = min{d(u,x): x is an element of W}. Let Pi={W-1, W-2, W-3, ...,W-t}be an ordered t-partition of V(G), the representation of v with respect to Pi is the t-vector r(nu vertical bar Pi) = (d(nu,W-1), d(upsilon,W-2),d(upsilon,W-3), ...,d(upsilon,W-t)). If the representations of the all vertices of G with respect to Pi are distinct, then t-partition Pi is a resolving partition. The minimum t for which there is a resolving t-partition of V(G) is the partition dimension pd(G) of G. In this paper, we determined the upper bound of partition dimension for convex polytopes.
引用
收藏
页码:2535 / 2548
页数:14
相关论文
共 50 条
  • [1] On bounded partition dimension of different families of convex polytopes with pendant edges
    Khali, Adnan
    Husain, Sh. K. Said
    Nadeem, Muhammad Faisal
    [J]. AIMS MATHEMATICS, 2022, 7 (03): : 4405 - 4415
  • [2] On Partition Dimension of Generalized Convex Polytopes
    Shah, Syed Waqas
    Khan, Muhammad Yasin
    Ali, Gohar
    Nurhidayat, Irfan
    Sahoo, Soubhagya Kumar
    Emadifar, Homan
    [J]. JOURNAL OF MATHEMATICS, 2023, 2023
  • [3] Bounds on the Partition Dimension of Convex Polytopes
    Liu, Jia-Bao
    Nadeem, Muhammad Faisal
    Azeem, Mohammad
    [J]. COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2022, 25 (03) : 547 - 553
  • [4] On Sharp Bounds on Partition Dimension of Convex Polytopes
    Chu, Yu-Ming
    Nadeem, Muhammad Faisal
    Azeem, Muhammad
    Siddiqui, Muhammad Kamran
    [J]. IEEE ACCESS, 2020, 8 : 224781 - 224790
  • [5] Classes of convex polytopes with constant metric dimension
    Imran, Muhammad
    Baig, A. Q.
    Shafiq, M. K.
    Semanicova-Fenovcikova, Andrea
    [J]. UTILITAS MATHEMATICA, 2013, 90 : 85 - 99
  • [6] New classes of convex polytopes with constant metric dimension
    Imran, Muhammad
    Baig, A. Q.
    Bokhary, S. A.
    Baskoro, E. T.
    [J]. UTILITAS MATHEMATICA, 2014, 95 : 97 - 111
  • [7] Partition Dimension of Some Classes of Trees
    Arimbawa, Ida Bagus Kade Puja K.
    Baskoro, Edy Tri
    [J]. 2ND INTERNATIONAL CONFERENCE OF GRAPH THEORY AND INFORMATION SECURITY, 2015, 74 : 67 - 72
  • [8] On Constant Metric Dimension of Some Generalized Convex Polytopes
    Zuo, Xuewu
    Ali, Abid
    Ali, Gohar
    Siddiqui, Muhammad Kamran
    Rahim, Muhammad Tariq
    Asare-Tuah, Anton
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [9] Minimal Doubly Resolving Sets of Some Classes of Convex Polytopes
    Ahmad, Muhammad
    Alrowaili, Dalal
    Zahid, Zohaib
    Siddique, Imran
    Iampan, Aiyared
    [J]. JOURNAL OF MATHEMATICS, 2022, 2022
  • [10] ON THE METRIC DIMENSION OF CONVEX POLYTOPES
    Imran, Muhammad
    Bokhary, Syed Ahtsham Ul Haq
    Baig, A. Q.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2013, 10 (03) : 295 - 307