Quasi-likelihood Bridge estimators for high-dimensional generalized linear models

被引:3
|
作者
Cui, Xiaohua [1 ]
Chen, Xia [1 ]
Yan, Li [1 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710062, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Bridge estimators; Generalized linear models; High-dimensional data; Quasi-likelihood; Variable selection; STRONG CONSISTENCY; VARIABLE SELECTION; ORACLE PROPERTIES; DIVERGING NUMBER; ADAPTIVE DESIGNS; REGRESSION; LASSO; PARAMETERS; SHRINKAGE;
D O I
10.1080/03610918.2016.1271890
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider the variable selection and estimation for high-dimensional generalized linear models when the number of parameters diverges with the sample size. We propose a penalized quasi-likelihood function with the bridge penalty. The consistency and the Oracle property of the quasi-likeiihood bridge estimators are obtained. Some simulations and a real data analysis are given to illustrate the performance of the proposed method.
引用
收藏
页码:8190 / 8204
页数:15
相关论文
共 50 条