Arithmetic Meyer sets and finite automata

被引:2
|
作者
Akiyama, S
Bassino, F
Frougny, C [1 ]
机构
[1] Niigata Univ, Dept Math, Niigata 95021, Japan
[2] Univ Paris 07, CNRS, LIAFA, F-75221 Paris, France
[3] Univ Paris 08, F-93526 St Denis, France
基金
日本学术振兴会;
关键词
D O I
10.1016/j.ic.2005.05.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Non-standard number representation has proved to be useful in the speed-up of some algorithms, and in the modelization of solids called quasicrystals. Using tools from automata theory, we study the set Z(beta) of beta-integers, that is, the set of real numbers which have a zero fractional part when expanded in a real base 8, for a given beta > 1. In particular, when beta is a Pisot number-like the golden mean-, the set Z(beta) is a Meyer set, which implies that there exists a finite set F (which depends only on beta) such that Z(beta) - Z(beta) subset of Z(beta) + F. Such a finite set F, even of minimal size, is not uniquely determined. In this paper, we give a method to construct the sets F and an algorithm, whose complexity is exponential in time and space, to minimize their size. We also give a finite transducer that performs the decomposition of the elements of Z(beta) - Z(beta) as a sum belonging to Z(beta) + F. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:199 / 215
页数:17
相关论文
共 50 条
  • [1] Automata for arithmetic Meyer sets
    Akiyama, S
    Bassino, F
    Frougny, C
    [J]. LATIN 2004: THEORETICAL INFORMATICS, 2004, 2976 : 252 - 261
  • [2] ARITHMETIC AND FINITE AUTOMATA
    ALLOUCHE, JP
    [J]. ASTERISQUE, 1987, (147-48) : 13 - 26
  • [3] ON HIGHER DIMENSIONAL ARITHMETIC PROGRESSIONS IN MEYER SETS
    Klick, Anna
    Strungaru, Nicolae
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 114 (03) : 312 - 336
  • [4] ARITHMETIC CODING OF WEIGHTED FINITE AUTOMATA
    KARI, J
    FRANTI, P
    [J]. RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1994, 28 (3-4): : 343 - 360
  • [5] Substitutions, arithmetic and finite automata: an introduction
    Mauduit, C
    [J]. SUBSTITUTIONS IN DYNAMICS, ARITHMETICS AND COMBINATORICS, 2002, 1794 : 35 - 52
  • [6] FINITE SETS AND ARITHMETIC PROGRESSIONS
    HAMPTON, CR
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (10): : 866 - 866
  • [7] NONCOMMUTATIVE ARITHMETIC CIRCUITS MEET FINITE AUTOMATA
    Arvind, V.
    [J]. BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2011, (104): : 45 - 66
  • [8] Arithmetic Circuits, Monomial Algebras and Finite Automata
    Arvind, Vikraman
    Joglekar, Pushkar S.
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2009, 2009, 5734 : 78 - 89
  • [9] Representing arithmetic constraints with finite automata: An overview
    Boigelot, B
    Wolper, P
    [J]. LOGICS PROGRAMMING, PROCEEDINGS, 2002, 2401 : 1 - 19
  • [10] Finite sets and infinite sets in weak intuitionistic arithmetic
    Takako Nemoto
    [J]. Archive for Mathematical Logic, 2020, 59 : 607 - 657