Linear approximation and identification of MIMO Wiener-Hammerstein systems

被引:20
|
作者
Katayama, Tohru [1 ,2 ]
Ase, Hajime [3 ]
机构
[1] Ritsumeikan Univ, Kusatsu, Shiga 5258577, Japan
[2] Kyoto Univ, Kyoto 6068501, Japan
[3] Math Technol Inst, 1-64-14 Shibasaki, Chofu, Tokyo 1820014, Japan
关键词
Wiener-Hammerstein system; Linear approximation; Orthogonal projection; Subspace identification; Basis function expansion; Separable least-squares;
D O I
10.1016/j.automatica.2016.04.040
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the linear approximation and identification of multi-input multi-output (MIMO) Wiener-Hammerstein systems, or LNL systems. Evaluating the input-output cross-covariance matrix of the MIMO LNL system for Gaussian inputs, we show that the best linear approximation of the MIMO LNL system in the mean square sense can be obtained by the orthogonal projection (ORT) subspace identification method. For each allocation of the poles of the best linear approximation between the two linear subsystems, the unknown parameters in the numerators of the linear subsystems and the coefficients of a basis function expansion of the nonlinearity are estimated by applying the separable least-squares. The best LNL system is the one that gives the minimum mean square output error. A numerical example is included to show the feasibility of the present approach. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:118 / 124
页数:7
相关论文
共 50 条
  • [1] Identification of Wiener-Hammerstein systems using the best linear approximation
    Lauwers L.
    Schoukens J.
    [J]. Lecture Notes in Control and Information Sciences, 2010, 404 : 209 - 225
  • [2] Identification of Wiener-Hammerstein systems by a nonparametric separation of the best linear approximation
    Schoukens, Maarten
    Pintelon, Rik
    Rolain, Yves
    [J]. AUTOMATICA, 2014, 50 (02) : 628 - 634
  • [3] Identification of Parallel Wiener-Hammerstein Systems
    Brouri, A.
    Ouannou, A.
    Giri, F.
    Oubouaddi, H.
    Chaoui, F.
    [J]. IFAC PAPERSONLINE, 2022, 55 (12): : 25 - 30
  • [4] RECURSIVE IDENTIFICATION OF WIENER-HAMMERSTEIN SYSTEMS
    Mu, Bi-Qiang
    Chen, Han-Fu
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (05) : 2621 - 2658
  • [5] Wiener-Hammerstein systems and harmonic identification
    Baratchart, Laurent
    Caenepeel, Matthias
    Rolain, Yves
    [J]. 2015 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2015, : 612 - 617
  • [6] An identification algorithm for parallel Wiener-Hammerstein systems
    Schoukens, M.
    Vandersteen, G.
    Roain, Y.
    [J]. 2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 4907 - 4912
  • [7] Parametric identification of parallel Wiener-Hammerstein systems
    Schoukens, Maarten
    Marconato, Anna
    Pintelon, Rik
    Vandersteen, Gerd
    Rolain, Yves
    [J]. AUTOMATICA, 2015, 51 : 111 - 122
  • [8] IDENTIFICATION AND COMPENSATION OF WIENER-HAMMERSTEIN SYSTEMS WITH FEEDBACK
    Bolstad, Andrew
    Miller, Benjamin A.
    Goodman, Joel
    Vian, James
    Kalyanam, Janani
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4056 - 4059
  • [9] An iterative method for Wiener-Hammerstein systems parameter identification
    Voeroes, Jozef
    [J]. JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2007, 58 (02): : 114 - 117
  • [10] Cascading Wiener-Hammerstein systems
    Dobrowiecki, TP
    Schoukens, J
    [J]. IMTC 2002: PROCEEDINGS OF THE 19TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1 & 2, 2002, : 881 - 886