Recurrence in unipotent groups and ergodic nonabelian group extensions

被引:5
|
作者
Greschonig, G [1 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
关键词
D O I
10.1007/BF02785367
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a measure-preserving and ergodic transformation of a standard probability space (X, 8, mu) and let f : X -> SUTd(R) be a Borel map into the group of unipotent upper triangular d x d matrices. We modify an argument in [12] to obtain a sufficient condition for the recurrence of the random walk defined by f, in terms of the asymptotic behaviour of the distributions of the suitably scaled maps f (n, x) = (fT(n-1 .) fT(n-2...) fT (.) f). We give examples of recurrent cocycles with values in the continuous Heisenberg group H-1(R) = SUT3(R), and we use a recurrent cocycle to construct an ergodic skew-product extension of an irrational rotation by the discrete Heisenberg group H-1(Z) = SUT3(Z).
引用
收藏
页码:245 / 267
页数:23
相关论文
共 50 条