Generative adversarial networks for data augmentation in machine fault diagnosis

被引:323
|
作者
Shao, Siyu [1 ]
Wang, Pu [1 ]
Yan, Ruqiang [1 ,2 ]
机构
[1] Southeast Univ, Sch Instrument Sci & Engn, 2 Sipailou, Nanjing 210096, Jiangsu, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Auxiliary classifier generative adversarial networks; Fault diagnosis; Data augmentation; Signal generation; Induction motor;
D O I
10.1016/j.compind.2019.01.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Generative adversarial networks (GANs) have been proved to be able to produce artificial data that are alike the real data, and have been successfully applied to various image generation tasks as a useful tool for data augmentation. In this paper, we develop an auxiliary classifier GAN(ACGAN)-based framework to learn from mechanical sensor signals and generate realistic one-dimensional raw data. The proposed architecture contains two parts, generator and discriminator, and both of them are built by stacking one-dimensional convolution layers to learn local features from the original input. Such stacked structure is able to learn hierarchical representations through convolution operation and easy to train. Batch normalization is performed within generator to avoid the problem of gradient vanishing during training, and category labels are used as the auxiliary information in this framework to help train the model. The proposed approach is designed to produce realistic synthesized signals with labels and the generated signals can be used as augmented data for further applications in machine fault diagnosis. In order to evaluate the performance of the generative model, we introduce a set of assessment to evaluate the quality of generated samples, including statistical characteristics and experimental verification. Finally, induction motor vibration signal datasets are utilized to investigate the effectiveness of the proposed framework. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 93
页数:9
相关论文
共 50 条
  • [1] Data augment method for machine fault diagnosis using conditional generative adversarial networks
    Wang, Jinrui
    Han, Baokun
    Bao, Huaiqian
    Wang, Mingyan
    Chu, Zhenyun
    Shen, Yuwei
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2020, 234 (12) : 2719 - 2727
  • [2] Improved Generative Adversarial Networks With Filtering Mechanism for Fault Data Augmentation
    Shao, Lexuan
    Lu, Ningyun
    Jiang, Bin
    Simani, Silvio
    Song, Le
    Liu, Zhengyuan
    [J]. IEEE SENSORS JOURNAL, 2023, 23 (13) : 15176 - 15187
  • [3] An interpretable data augmentation scheme for machine fault diagnosis based on a sparsity-constrained generative adversarial network
    Ma, Liang
    Ding, Yu
    Wang, Zili
    Wang, Chao
    Ma, Jian
    Lu, Chen
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 182
  • [4] An interpretable data augmentation scheme for machine fault diagnosis based on a sparsity-constrained generative adversarial network
    Ma, Liang
    Ding, Yu
    Wang, Zili
    Wang, Chao
    Ma, Jian
    Lu, Chen
    [J]. Expert Systems with Applications, 2021, 182
  • [5] Generative Adversarial Networks for Bitcoin Data Augmentation
    Zola, Francesco
    Lukas Bruse, Jan
    Etxeberria Barrio, Xabier
    Galar, Mikel
    Orduna Urrutia, Raul
    [J]. 2020 2ND CONFERENCE ON BLOCKCHAIN RESEARCH & APPLICATIONS FOR INNOVATIVE NETWORKS AND SERVICES (BRAINS), 2020, : 136 - 143
  • [6] Data Augmentation with Improved Generative Adversarial Networks
    Shi, Hongjiang
    Wang, Lu
    Ding, Guangtai
    Yang, Fenglei
    Li, Xiaoqiang
    [J]. 2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 73 - 78
  • [7] Data Augmentation Powered by Generative Adversarial Networks
    Poka, Karoly Bence
    Szemenyei, Marton
    [J]. 2020 23RD IEEE INTERNATIONAL SYMPOSIUM ON MEASUREMENT AND CONTROL IN ROBOTICS (ISMCR), 2020,
  • [8] Conditional Generative Adversarial Networks with Adversarial Attack and Defense for Generative Data Augmentation
    Baek, Francis
    Kim, Daeho
    Park, Somin
    Kim, Hyoungkwan
    Lee, SangHyun
    [J]. JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2022, 36 (03)
  • [9] Data augmentation in fault diagnosis based on the Wasserstein generative adversarial network with gradient penalty
    Gao, Xin
    Deng, Fang
    Yue, Xianghu
    [J]. NEUROCOMPUTING, 2020, 396 : 487 - 494
  • [10] Generative Adversarial Network With Dual Multiscale Feature Fusion for Data Augmentation in Fault Diagnosis
    Ren, Zhijun
    Ji, Jinchen
    Zhu, Yongsheng
    Hong, Jun
    Feng, Ke
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72