Two-dimensional nonlinear dynamics of beam-plasma instability

被引:37
|
作者
Ziebell, L. F. [1 ]
Gaelzer, R. [2 ]
Pavan, J. [1 ]
Yoon, P. H. [3 ,4 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Fis, Porto Alegre, RS, Brazil
[2] Univ Fed Pelotas, Inst Fis & Matemat, Pelotas, RS, Brazil
[3] Massachusetts Technol Lab Inc, Belmont, MA 02478 USA
[4] Univ Maryland, IPST, College Pk, MD 20742 USA
关键词
D O I
10.1088/0741-3335/50/8/085011
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Numerical solutions for equations of weak turbulence theory that describe the beam-plasma interaction are obtained in two dimensions (2D). The self-consistent theory governs quasilinear processes as well as nonlinear decay and scattering processes. It is found that the Langmuir turbulence scatters into a quasi-circular ring spectrum in 2D wave number space, accompanied by quasi-isotropic heating of the electrons. When projected onto the one-dimensional (1D) space, 2D Langmuir turbulence spectrum appears as an inverse cascade, when in reality, the wavelength of the turbulence does not change but only the wave propagation angle changes. These findings are similar to those obtained in a previous analysis in which scattering processes were not taken into account, but it is found that the scattering term leads to a quantifiably higher scattering rate.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Two-dimensional nonlinear dynamics of bidirectional beam-plasma instability
    Pavan, J.
    Ziebell, L. F.
    Gaelzer, R.
    Yoon, P. H.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114
  • [2] Simulation and theory for two-dimensional beam-plasma instability
    Yi, Sumin
    Rhee, Tongnyeol
    Ryu, Chang-Mo
    Yoon, Peter H.
    [J]. PHYSICS OF PLASMAS, 2010, 17 (12)
  • [3] Two-dimensional quasilinear beam-plasma instability in inhomogeneous media
    Ziebell, L. F.
    Yoon, P. H.
    Pavan, J.
    Gaelzer, R.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (08)
  • [4] Two-dimensional time evolution of beam-plasma instability in the presence of binary collisions
    Tigik, S. F.
    Ziebell, L. F.
    Yoon, P. H.
    Kontar, E. P.
    [J]. ASTRONOMY & ASTROPHYSICS, 2016, 586
  • [5] Nonlinear dynamics of beam-plasma instability in a finite magnetic field
    Bogdankevich, I. L.
    Goncharov, P. Yu
    Gusein-zade, N. G.
    Ignatov, A. M.
    [J]. PLASMA PHYSICS REPORTS, 2017, 43 (06) : 648 - 658
  • [6] Two-dimensional simulations of nonlinear beam-plasma interaction in isotropic and magnetized plasmas
    Timofeev, I. V.
    [J]. PHYSICS OF PLASMAS, 2012, 19 (04)
  • [7] STABILIZATION OF THE KINETIC BEAM-PLASMA INSTABILITY BY STRONG TURBULENCE - ONE-DIMENSIONAL OR TWO-DIMENSIONAL
    ROWLAND, HL
    LYON, JG
    PAPADOPOULOS, K
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 1037 - 1037
  • [8] NONLINEAR DEVELOPMENT OF BEAM-PLASMA INSTABILITY
    DRUMMOND, WE
    MALMBERG, JH
    ONEIL, TM
    THOMPSON, JR
    [J]. PHYSICS OF FLUIDS, 1970, 13 (09) : 2422 - +
  • [9] Beam-plasma interaction in two-dimensional Yukawa lattices
    Kyrkos, Stamatios
    Kalman, Gabor J.
    Rosenberg, Marlene
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2007, 35 (02) : 342 - 345
  • [10] NONLINEAR-THEORY ON BEAM-PLASMA INSTABILITY
    KRASOVITSKII, VB
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1973, 64 (05): : 1597 - 1605