Canonical approach to stabilization of rigid body dynamics

被引:0
|
作者
Gurfil, P [1 ]
机构
[1] Technion Israel Inst Technol, Fac Aerosp Engn, IL-32000 Haifa, Israel
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper develops a new paradigm for stabilization of rigid body dynamics. The state-space model is formulated using canonical elements, known as the Serret-Andoyer (SA) variables, thus far scarcely used for engineering applications. The main feature of the SA formalism is the reduction of the dynamics via the underlying symmetry stemming from conservation of angular momentum and rotational kinetic energy. We use the Hamiltonian as a natural Lyapunov function for the closed-loop dynamics. It is shown that the Hamiltonian controller is both passive and inverse optimal with respect to a meaningful performance index.
引用
收藏
页码:1167 / 1172
页数:6
相关论文
共 50 条
  • [1] Canonical formalism for modelling and control of rigid body dynamics
    Gurfil, P.
    [J]. NEW TRENDS IN ASTRODYNAMICS AND APPLICATIONS, 2005, 1065 : 391 - 413
  • [2] STABILIZATION OF RIGID BODY DYNAMICS BY INTERNAL AND EXTERNAL TORQUES
    BLOCH, AM
    KRISHNAPRASAD, PS
    MARSDEN, JE
    DEALVAREZ, GS
    [J]. AUTOMATICA, 1992, 28 (04) : 745 - 756
  • [3] STABILIZATION OF RIGID BODY DYNAMICS BY THE ENERGY CASIMIR METHOD
    BLOCH, AM
    MARSDEN, JE
    [J]. SYSTEMS & CONTROL LETTERS, 1990, 14 (04) : 341 - 346
  • [4] DYNAMICS AND STABILIZATION OF A FLEXIBLE ORBITING SPACECRAFT WITH A RIGID TIP BODY
    LUO, ZH
    SAKAWA, Y
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1994, 25 (02) : 205 - 223
  • [5] Stabilization of rigid body dynamics using the Serret-Andoyer variables
    Gurfil, P
    [J]. ACC: PROCEEDINGS OF THE 2005 AMERICAN CONTROL CONFERENCE, VOLS 1-7, 2005, : 2122 - 2127
  • [6] Almost Global Finite Time Stabilization of Rigid Body Attitude Dynamics
    Sanyal, Amit K.
    Bohn, Jan
    Bloch, Anthony M.
    [J]. 2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 3261 - 3266
  • [7] Stabilization of the programmed motions of a rigid body with uncertainty in the parameters of the equations of dynamics
    Zaremba, AT
    [J]. PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1997, 61 (01): : 33 - 39
  • [8] A unified approach to rigid body rotational dynamics and control
    Udwadia, Firdaus E.
    Schutte, Aaron D.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2138): : 395 - 414
  • [9] Dynamics of systems with rigid body modes: A numerical approach
    MartinezGonzalez, JL
    Ramos, RJ
    Ballesteros, JS
    [J]. PROCEEDINGS OF THE SIXTH (1996) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL II, 1996, 1996, : 217 - 223
  • [10] Rigid body dynamics approach to Stokesian dynamics simulations of nonspherical particles
    Kutteh, Ramzi
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (17):