Long cycles containing k-ordered vertices in graphs

被引:1
|
作者
Nicholson, Emlee W. [1 ]
Wei, Bing [1 ]
机构
[1] Univ Mississippi, Dept Math, University, MS 38677 USA
关键词
k-ordered graph; longest cycle; circumference bound; noninsertible;
D O I
10.1016/j.disc.2007.04.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a (k + 2)-connected graph on n vertices and S = {nu(1), nu(2),...,nu(k)} be any ordered set of vertices, that is, the vertices in S appear in the order of the sequence nu(1), nu(2),...,nu(k). We will show that if there exists a cycle containing S in the given order, then there exists a cycle C containing S in the given order such that vertical bar C vertical bar >= min{n, sigma(2)(G)} where sigma(2)(G) = min{d(G)(u) + d(G)(nu): u, nu E V(G); u nu is not an element of E(G)} when G is not complete, otherwise set sigma(2)(G) = infinity. This generalizes several related results known before. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1563 / 1570
页数:8
相关论文
共 50 条
  • [1] Long Paths containing k-ordered vertices in Graphs
    Nicholson, Emlee W.
    Wei, Bing
    ARS COMBINATORIA, 2014, 114 : 437 - 448
  • [2] On k-ordered graphs
    Faudree, JR
    Faudree, RJ
    Gould, RJ
    Jacobson, MS
    Lesniak, L
    JOURNAL OF GRAPH THEORY, 2000, 35 (02) : 69 - 82
  • [3] On k-ordered Hamiltonian graphs
    Kierstead, HA
    Sárközy, GN
    Selkow, SM
    JOURNAL OF GRAPH THEORY, 1999, 32 (01) : 17 - 25
  • [4] K-ordered hamiltonian graphs
    Ng, L
    Schultz, M
    JOURNAL OF GRAPH THEORY, 1997, 24 (01) : 45 - 57
  • [5] Generalizing Pancyclic and k-Ordered Graphs
    Ralph J. Faudree
    Ronald J. Gould
    Michael S. Jacobson
    Linda Lesniak
    Graphs and Combinatorics, 2004, 20 : 291 - 309
  • [6] Survey of results on k-ordered graphs
    Faudree, RJ
    DISCRETE MATHEMATICS, 2001, 229 (1-3) : 73 - 87
  • [7] k-Ordered Hamilton cycles in digraphs
    Kuehn, Daniela
    Cisthus, Deryk
    Young, Andrew
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (06) : 1165 - 1180
  • [8] A study on the k-ordered hamiltonian graphs
    Marcu, Danut
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2008, 11 (01): : 19 - 31
  • [9] On low degree k-ordered graphs
    Meszaros, Karola
    DISCRETE MATHEMATICS, 2008, 308 (12) : 2418 - 2426
  • [10] Generalizing pancyclic and k-ordered graphs
    Faudree, RJ
    Gould, RJ
    Jacobson, MS
    Lesniak, L
    GRAPHS AND COMBINATORICS, 2004, 20 (03) : 291 - 309