Beyond Quantifier-Free Interpolation in Extensions of Presburger Arithmetic

被引:0
|
作者
Brillout, Angelo [1 ]
Kroening, Daniel [2 ]
Ruemmer, Philipp [2 ]
Wahl, Thomas [2 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
[2] Univ Oxford Comp Lab, Oxford OX1 2JD, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Craig interpolation has emerged as an effective means of generating candidate program invariants. We present interpolation procedures for the theories of Presburger arithmetic combined with (i) uninterpreted predicates (QPA+UP), (ii) uninterpreted functions (QPA+UF) and (iii) extensional arrays (QPA+AR). We prove that none of these combinations can be effectively interpolated without the use of quantifiers, even if the input formulae are quantifier-free. We go on to identify fragments of QPA+UP and QPA+UF with restricted forms of guarded quantification, that are closed under interpolation. Formulae in these fragments can easily be mapped to quantifier-free expressions with integer division. For QPA+AR, we formulate a sound interpolation procedure that potentially produces interpolants with unrestricted quantifiers.
引用
收藏
页码:88 / +
页数:2
相关论文
共 50 条
  • [1] Interpolating Quantifier-Free Presburger Arithmetic
    Kroening, Daniel
    Leroux, Jerome
    Ruemmer, Philipp
    [J]. LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, 2010, 6397 : 489 - +
  • [2] An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic
    Angelo Brillout
    Daniel Kroening
    Philipp Rümmer
    Thomas Wahl
    [J]. Journal of Automated Reasoning, 2011, 47 : 341 - 367
  • [3] An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic
    Brillout, Angelo
    Kroening, Daniel
    Ruemmer, Philipp
    Wahl, Thomas
    [J]. JOURNAL OF AUTOMATED REASONING, 2011, 47 (04) : 341 - 367
  • [4] An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic
    Brillout, Angelo
    Kroening, Daniel
    Ruemmer, Philipp
    Wahl, Thomas
    [J]. AUTOMATED REASONING, 2010, 6173 : 384 - +
  • [5] Flat Model Checking for Counting LTL Using Quantifier-Free Presburger Arithmetic
    Decker, Normann
    Pirogov, Anton
    [J]. VERIFICATION, MODEL CHECKING, AND ABSTRACT INTERPRETATION, VMCAI 2019, 2019, 11388 : 513 - 534
  • [6] Quantifier elimination for counting extensions of Presburger arithmetic
    Chistikov, Dmitry
    Haase, Christoph
    Mansutti, Alessio
    [J]. FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES (FOSSACS 2022), 2022, 13242 : 225 - 243
  • [7] QUANTIFIER-FREE INTERPOLATION OF A THEORY OF ARRAYS
    Bruttomesso, Roberto
    Ghilardi, Silvio
    Ranise, Silvio
    [J]. LOGICAL METHODS IN COMPUTER SCIENCE, 2012, 8 (02)
  • [8] An algebraic treatment of quantifier-free systems of arithmetic
    Montagna, F
    [J]. ARCHIVE FOR MATHEMATICAL LOGIC, 1996, 35 (04) : 209 - 224
  • [9] Deciding quantifier-free Presburger formulas using parameterized solution bounds
    Seshia, SA
    Bryant, RE
    [J]. 19TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2004, : 100 - 109
  • [10] Quantifier-Free Interpolation in Combinations of Equality Interpolating Theories
    Bruttomesso, Roberto
    Ghilardi, Silvio
    Ranise, Silvio
    [J]. ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2014, 15 (01)