False discovery rates for large-scale model checking under certain dependence

被引:0
|
作者
Deng, Lu [1 ,2 ]
Zi, Xuemin [3 ]
Li, Zhonghua [1 ,2 ]
机构
[1] Nankai Univ, Inst Stat, Tianjin, Peoples R China
[2] Nankai Univ, LPMC, Tianjin, Peoples R China
[3] Tianjin Univ Technol & Educ, Sch Sci, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
False discovery rate; Model checking; Multiple hypotheses testing; Weak dependence; SELECTION;
D O I
10.1080/03610926.2017.1300279
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In many scientific fields, it is interesting and important to determine whether an observed data stream comes from a prespecified model or not, particularly when the number of data streams is of large scale, where multiple hypotheses testing is necessary. In this article, we consider large-scale model checking under certain dependence among different data streams observed at the same time. We propose a false discovery rate (FDR) control procedure to check those unusual data streams. Specifically, we derive an approximation of false discovery and construct a point estimate of FDR. Theoretical results show that, under some mild assumptions, our proposed estimate of FDR is simultaneously conservatively consistent with the true FDR, and hence it is an asymptotically strong control procedure. Simulation comparisons with some competing procedures show that our proposed FDR procedure behaves better in general settings. Application of our proposed FDR procedure is illustrated by the StarPlus fMRI data.
引用
收藏
页码:64 / 79
页数:16
相关论文
共 50 条
  • [1] Optimal Control of Directional False Discovery Rates in Large-Scale Testing
    Tang, Guozhu
    Kang, Yicheng
    Xiang, Dongdong
    STATISTICS IN MEDICINE, 2025, 44 (05)
  • [2] Efficient Large-Scale Model Checking
    Verstoep, Kees
    Bal, Henri E.
    Barnat, Jiri
    Brim, Lubos
    2009 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-5, 2009, : 201 - +
  • [3] Large-scale directed model checking LTL
    Edelkamp, S
    Jabbar, S
    MODEL CHECKING SOFTWARE, PROCEEDINGS, 2006, 3925 : 1 - 18
  • [4] False discovery control in large-scale spatial multiple testing
    Sun, Wenguang
    Reich, Brian J.
    Cai, T. Tony
    Guindani, Michele
    Schwartzman, Armin
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (01) : 59 - 83
  • [5] Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0
    The, Matthew
    MacCoss, Michael J.
    Noble, William S.
    Kall, Lukas
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2016, 27 (11) : 1719 - 1727
  • [6] Large-scale simultaneous inference under dependence
    Tian, Jinjin
    Chen, Xu
    Katsevich, Eugene
    Goeman, Jelle
    Ramdas, Aaditya
    SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (02) : 750 - 796
  • [7] Large-scale multiple testing under dependence
    Sun, Wenguang
    Cai, T. Tony
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 393 - 424
  • [8] Directional false discovery rate control in large-scale multiple comparisons
    Liang, Wenjuan
    Xiang, Dongdong
    Mei, Yajun
    Li, Wendong
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (15) : 3195 - 3214
  • [9] Weighted False Discovery Rate Control in Large-Scale Multiple Testing
    Basu, Pallavi
    Cai, T. Tony
    Das, Kiranmoy
    Sun, Wenguang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (523) : 1172 - 1183
  • [10] The False Discovery Rate: A Key Concept in Large-Scale Genetic Studies
    Chen, James J.
    Roberson, Paula K.
    Schell, Michael J.
    CANCER CONTROL, 2010, 17 (01) : 58 - 62