Regularity results of the thin obstacle problem for the p(x)-Laplacian

被引:9
|
作者
Byun, Sun-Sig [1 ,2 ]
Lee, Ki-Ahm [1 ,3 ]
Oh, Jehan [1 ]
Park, Jinwan [1 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Korea Inst Adv Study, Ctr Math Challenges, Seoul 02455, South Korea
基金
新加坡国家研究基金会;
关键词
Regularity; p(x)-Laplacian; Thin obstacle problem; Variable exponent; POROUS-MEDIUM EQUATION; VARIABLE EXPONENT; FUNCTIONALS; SPACES; BOUNDARY; GRADIENT;
D O I
10.1016/j.jfa.2018.06.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study thin obstacle problems involving the energy functional with p(x)-growth. We prove higher integrability and Holder regularity for the gradient of minimizers of the thin obstacle problems under the assumption that the variable exponent p(x) is Holder continuous. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:496 / 519
页数:24
相关论文
共 50 条
  • [1] Optimal regularity for the obstacle problem for the p-Laplacian
    Andersson, John
    Lindgren, Erik
    Shahgholian, Henrik
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (06) : 2167 - 2179
  • [2] HIGHER REGULARITY OF THE SOLUTION TO THE P-LAPLACIAN OBSTACLE PROBLEM
    MU, J
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 95 (02) : 370 - 384
  • [3] On the regularity of the free boundary in the p-Laplacian obstacle problem
    Figalli, Alessio
    Krummel, Brian
    Ros-Oton, Xavier
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (03) : 1931 - 1945
  • [4] Higher regularity of the free boundary in the obstacle problem for the fractional Laplacian
    Jhaveri, Yash
    Neumayer, Robin
    [J]. ADVANCES IN MATHEMATICS, 2017, 311 : 748 - 795
  • [5] Optimal regularity of solutions to the obstacle problem for the fractional Laplacian with drift
    Petrosyan, Arshak
    Pop, Camelia A.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (02) : 417 - 472
  • [6] Regularity of the free boundary for the obstacle problem for the fractional Laplacian with drift
    Garofalo, Nicola
    Petrosyan, Arshak
    Pop, Camelia A.
    Garcia, Mariana Smit Vega
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (03): : 533 - 570
  • [7] GLOBAL REGULARITY FOR THE FREE BOUNDARY IN THE OBSTACLE PROBLEM FOR THE FRACTIONAL LAPLACIAN
    Barrios, Begona
    Figalli, Alessio
    Ros-Oton, Xavier
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2018, 140 (02) : 415 - 447
  • [8] Structure and regularity of the singular set in the obstacle problem for the fractional Laplacian
    Garofalo, Nicola
    Ros-Oton, Xavier
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (05) : 1309 - 1365
  • [9] Higher regularity for the fractional thin obstacle problem
    Koch, Herbert
    Rueland, Angkana
    Shi, Wenhui
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2019, 25 : 745 - 838
  • [10] Application of Uniform Distribution to Homogenization of a Thin Obstacle Problem with p-Laplacian
    Karakhanyan, Aram L.
    Stromqvist, Martin H.
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (10) : 1870 - 1897