Annotation-efficient deep learning for automatic medical image segmentation

被引:72
|
作者
Wang, Shanshan [1 ,2 ,3 ]
Li, Cheng [1 ]
Wang, Rongpin [4 ]
Liu, Zaiyi [5 ]
Wang, Meiyun [6 ,7 ]
Tan, Hongna [6 ,7 ]
Wu, Yaping [6 ,7 ]
Liu, Xinfeng [4 ]
Sun, Hui [1 ]
Yang, Rui [8 ]
Liu, Xin [1 ]
Chen, Jie [2 ,9 ]
Zhou, Huihui [10 ]
Ben Ayed, Ismail [11 ]
Zheng, Hairong [1 ]
机构
[1] Chinese Acad Sci, Paul C Lauterbur Res Ctr Biomed Imaging, Shenzhen Inst Adv Technol, Shenzhen, Guangdong, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Guangdong, Peoples R China
[3] Pazhou Lab, Guangzhou, Guangdong, Peoples R China
[4] Guizhou Prov Peoples Hosp, Dept Med Imaging, Guiyang, Guizhou, Peoples R China
[5] Guangdong Acad Med Sci, Guangdong Gen Hosp, Dept Med Imaging, Guangzhou, Guangdong, Peoples R China
[6] Henan Prov Peoples Hosp, Dept Med Imaging, Zhengzhou, Henan, Peoples R China
[7] Zhengzhou Univ, Peoples Hosp, Zhengzhou, Henan, Peoples R China
[8] Wuhan Univ, Dept Urol, Renmin Hosp, Wuhan, Hubei, Peoples R China
[9] Peking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Shenzhen, Guangdong, Peoples R China
[10] Chinese Acad Sci, Brain Cognit & Brain Dis Inst, Shenzhen Inst Adv Technol, Shenzhen, Guangdong, Peoples R China
[11] ETS Montreal, Montreal, PQ, Canada
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
DIAGNOSIS; MRI;
D O I
10.1038/s41467-021-26216-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Existing high-performance deep learning methods typically rely on large training datasets with high-quality manual annotations, which are difficult to obtain in many clinical applications. Here, the authors introduce an open-source framework to handle imperfect training datasets. Automatic medical image segmentation plays a critical role in scientific research and medical care. Existing high-performance deep learning methods typically rely on large training datasets with high-quality manual annotations, which are difficult to obtain in many clinical applications. Here, we introduce Annotation-effIcient Deep lEarning (AIDE), an open-source framework to handle imperfect training datasets. Methodological analyses and empirical evaluations are conducted, and we demonstrate that AIDE surpasses conventional fully-supervised models by presenting better performance on open datasets possessing scarce or noisy annotations. We further test AIDE in a real-life case study for breast tumor segmentation. Three datasets containing 11,852 breast images from three medical centers are employed, and AIDE, utilizing 10% training annotations, consistently produces segmentation maps comparable to those generated by fully-supervised counterparts or provided by independent radiologists. The 10-fold enhanced efficiency in utilizing expert labels has the potential to promote a wide range of biomedical applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Annotation-efficient deep learning for automatic medical image segmentation
    Shanshan Wang
    Cheng Li
    Rongpin Wang
    Zaiyi Liu
    Meiyun Wang
    Hongna Tan
    Yaping Wu
    Xinfeng Liu
    Hui Sun
    Rui Yang
    Xin Liu
    Jie Chen
    Huihui Zhou
    Ismail Ben Ayed
    Hairong Zheng
    [J]. Nature Communications, 12
  • [2] PyMIC: A deep learning toolkit for annotation-efficient medical image segmentation
    Wang, Guotai
    Luo, Xiangde
    Gu, Ran
    Yang, Shuojue
    Qu, Yijie
    Zhai, Shuwei
    Zhao, Qianfei
    Li, Kang
    Zhang, Shaoting
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 231
  • [3] Annotation-Efficient Learning for Medical Image Segmentation Based on Noisy Pseudo Labels and Adversarial Learning
    Wang, Lu
    Guo, Dong
    Wang, Guotai
    Zhang, Shaoting
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (10) : 2795 - 2807
  • [4] Annotation-efficient learning for OCT segmentation
    Zhang, H. A. O. R. A. N.
    Yang, J. I. A. N. L. O. N. G.
    Zheng, C. E.
    Zhao, S. H. I. Q. I. N. G.
    Zhang, A. I. L. I.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2023, 14 (07) : 3294 - 3307
  • [5] Collaborative Learning for Annotation-Efficient Volumetric MR Image Segmentation
    Osman, Yousuf Babiker M.
    Li, Cheng
    Huang, Weijian
    Wang, Shanshan
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023,
  • [6] Collaborative Learning for Annotation-Efficient Volumetric MR Image Segmentation
    Sabati, Mohammad
    Yang, Mingrui
    Chauhan, Anil
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024,
  • [7] Shifting to machine supervision: annotation-efficient semi and self-supervised learning for automatic medical image segmentation and classification
    Singh, Pranav
    Chukkapalli, Raviteja
    Chaudhari, Shravan
    Chen, Luoyao
    Chen, Mei
    Pan, Jinqian
    Smuda, Craig
    Cirrone, Jacopo
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [8] Annotation-Efficient Deep Learning: The Holy Grail of Medical Imaging
    Tajbakhsh, Nima
    Roth, Holger
    Terzopoulos, Demetri
    Liang, Jianming
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (10) : 2526 - 2533
  • [9] Annotation-Efficient Deep Learning for Free Breathing Proton Magnetic Resonance Imaging Segmentation
    Capaldi, D.
    Guo, F.
    Nano, T.
    Morin, O.
    Xing, L.
    Parraga, G.
    [J]. MEDICAL PHYSICS, 2020, 47 (06) : E360 - E360
  • [10] Towards annotation-efficient segmentation via image-to-image translation
    Vorontsov, Eugene
    Molchanov, Pavlo
    Gazda, Matej
    Beckham, Christopher
    Kautz, Jan
    Kadoury, Samuel
    [J]. MEDICAL IMAGE ANALYSIS, 2022, 82